Document Type


Publication Date



Translocation of fishes within and between drainage basins is widely recognised as a threatening process to Australian native fishes. While many translocations are deliberate, for example for fisheries enhancement, it is possible that translocation can occur naturally. In the Wet Tropic region of Australia, the widespread eastern rainbowfish, Melanotaenia splendida, has begun to colonise the Atherton tablelands. This is of particular concern because the area is home to several endangered endemic species such as the Lake Eacham rainbowfish, M. eachamensis, and its allies. It is likely that some of the translocations have occurred through the use of this species as bait, but the recent invasion of Lake Eacham may have occurred naturally via the movement of eggs between nearby streams running into Lake Tinaroo. Here we determine whether rainbowfish eggs could be transported over land by examining their desiccation tolerance. In the first experiment we plucked eggs from spawning media and exposed them to air for varying amounts of time. The results showalmost100%mortality after just 15 min. Rainbowfish eggs have a web-like projection that enables them to adhere to aquatic vegetation. In the second experiment, therefore, eggs were exposed to air attached to simulated weed (wet acrylic wool). Around 20% of eggs on the simulated weed where still viable after an hour. The results show that rainbowfish eggs could readily be transported between catchments by aquatic birds or human leisure activities such as kayaking or swimming. The implications for conservation management of Australian freshwater species is discussed.


In compliance with the publisher’s copyright and archiving policies, this is a post-print version of the document. Post-print materials contain the same content as their final edited versions, but are not formatted according to the layout of the published book or journal.