Denson, Thomas F. (2018) *Inferring emotion from amygdala activation alone is problematic*. *Animal Sentience* 22(9)
DOI: 10.51291/2377-7478.1337
Date of submission: 2018-05-27
Date of acceptance: 2018-06-01

This article has appeared in the journal *Animal Sentience*, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org.
Inferring emotion from amygdala activation alone is problematic
Commentary on Cook et al. on Dog Jealousy

Thomas F. Denson
School of Psychology, University of New South Wales

Abstract: Cook et al. investigated neural responses in domestic dogs in an experiment designed to elicit jealousy. Relative to a control condition, watching the dogs’ caregivers feed a fake dog activated the amygdala bilaterally. Dogs rated higher in dog-directed aggressiveness showed larger initial amygdala activation. Amygdala activity in this context is insufficient evidence to infer that the dogs experienced jealousy or even negative affect. The experimental design does not provide an adequate level of control to infer the presence of jealousy.

Jealousy, anger, and aggressive behavior may strain human-canine relations. Thus, research into understanding the emotional lives of domestic dogs will likely improve human-canine interactions and is therefore an important endeavor. In a very clever experiment, Cook et al. (2018) have conducted an investigation into the neural correlates of jealousy in dogs. Using functional magnetic resonance imaging (fMRI), 13 domestic dogs were trained for the MRI environment and completed three runs of three trial types: dog receives food, dog sees fake dog get food, and dog sees food deposited in a bucket (i.e., no one gets food). Analyses focused on the dog-directed aggression scale of the Canine Behavioral Assessment and Research Questionnaire (C-BARQ) as an additional predictor of BOLD responses in the bilateral amygdala.

Despite my enthusiasm for the topic and the general aims of this research, the claims are not justified by theory or the data. On a theoretical level, it seems unlikely that dogs experience jealousy in the same way humans do, if at all. Dogs certainly experience happiness, fear, anger, disgust, surprise, and sadness, which belong to a class of emotions known as basic emotions (Ekman, 1992). These six emotions are shared with many mammalian species. However, jealousy is part of a class of emotions known as self-conscious emotions or social emotions (Tangney & Salovey, 1999). These emotions are generally thought to be restricted to the human experience because they require higher-order abstract cognition such as theory of mind, complex cognitive appraisals, and attributions. Similarly, in human laboratory experiments, jealousy is invoked by threatened self-esteem (DeSteno, Valdesolo, & Bartlett, 2006). Dogs would require self-consciousness to experience a similar pathway to jealousy.

Examining just one brain structure, the amygdala, is highly unlikely to provide evidence for any specific emotional experience. The authors are right to qualify their findings by noting that amygdala responsivity is not isomorphic with any specific emotional experience. A meta-
analysis of human neuroimaging studies showed that all emotional stimuli increased amygdala activation, including positive emotions (Costafreda, Brammer, & David, & Fu, 2008). Thus, the amygdala can be viewed more as a brain structure that responds to stimuli with emotional relevance regardless of emotional valence. With that in mind, examining only the amygdala is insufficient to make claims about jealously. Based on amygdala activity alone, it is equally possible to claim that the dogs were happy or sad to see the fake dog get a treat, or that they simply found that condition more emotionally relevant than the others without experiencing any emotion at all.

Neuroimaging in humans has become increasingly detailed in its description of brain networks involved in different emotions. During these early days of research into emotions and the brain in dogs, an exploratory whole-brain analysis could be helpful in guiding future research and so could functional connectivity analyses. Future work could examine more widespread brain networks activated during emotions of interest to make stronger claims about the emotional experiences of dogs.

My assessment of this research is aligned with that of Vonk (2018), who suggested that more evidence with additional control conditions is needed before one can ascribe jealousy to dogs. The authors did not provide any convincing data on whether the subjects actually perceived the fake dog to be real. An unmoving statue that smells like another dog could be perceived as strange and hence threatening in its own right initially. In fact, the dogs who were rated highest on the C-BARQ aggression measure (i.e., those dogs highest in threat sensitivity) showed the largest amygdala habituation response. This finding suggests that they may have quickly figured out the charade. The finding that no dogs showed any aggression toward the fake dog is also consistent with this possibility. Jealousy is a robust elicitor of aggression in humans.

Assuming that the subjects did indeed perceive the fake dog as real, the experiment requires a control condition in which the fake dog is fed by someone other than the caregiver. Such a condition would reflect the emotion of envy in humans (e.g., coveting what someone else has). If something akin to a jealousy response is elicited, one should only see relevant BOLD responses in the caregiver condition. If relevant neural responses are observed in both conditions, the result is probably more indicative of intraspecific resource competition (e.g., something more akin to envy). The current design does not distinguish between these two possibilities.

One is left with the difficult problem of how to detect jealousy in dogs, if it exists. Detecting jealousy nonverbally is not easy in humans. Unlike basic emotions, jealousy does not have a universal facial expression. The only reliable method with people is to ask — and even then, humans must be willing and able to report their emotional experience. To date, there is no strong evidence for a unique pattern of brain activity during experienced jealousy, suggesting that finding the neural correlates of jealousy in dogs may take some time.

A final issue is that five of the 13 dogs had the lowest aggression score possible. Thus, the results rest on just 8 dogs. Replication and extension with a larger sample is warranted.

In sum, this experiment is part of growing methodological advances taking place in dog imaging, and I commend the authors for the effort. Learning as much as we can about the emotional lives of domestic dogs will no doubt improve human-canine relations and canine welfare.
References

Overview. Since Descartes, philosophers know there is no way to know for sure what — or whether — others feel (not even if they tell you). Science, however, is not about certainty but about probability and evidence. The 7.5 billion individual members of the human species can tell us what they are feeling. But there are 9 million other species on the planet (20 quintillion individuals), from elephants to jellyfish, with which humans share biological and cognitive ancestry, but not one other species can speak: Which of them can feel — and what do they feel? Their human spokespersons — the comparative psychologists, ethologists, evolutionists, and cognitive neurobiologists who are the world’s leading experts in “mind-reading” other species — will provide a sweeping panorama of what it feels like to be an elephant, ape, whale, cow, pig, dog, chicken, bat, fish, lizard, lobster, snail: This growing body of facts about nonhuman sentience has profound implications not only for our understanding of human cognition, but for our treatment of other sentient species.

Gregory Berns: Decoding the Dog’s Mind with Awake Neuroimaging
Gordon Burghardt: Probing the Umwelt of Reptiles
Jon Sakata: Audience Effects on Communication Signals
PANEL 1: Reptiles, Birds and Mammals
WORKSHOP 1: Kristin Andrews: The “Other” Problems: Mind, Behavior, and Agency
Sarah Brosnan: How Do Primates Feel About Their Social Partners?
Alexander Ophir: The Cognitive Ecology of Monogamy
Michael Hendricks: Integrating Action and Perception in a Small Nervous System
PANEL 2: Primates, Voles and Worms
WORKSHOP 2: Jonathan Birch: Animal Sentience and the Precautionary Principle
Malcolm Maclver: How Sentience Changed After Fish Invaded Land 385 Million Years Ago
Sarah Woolley: Neural Mechanisms of Preference in Female Songbird
Simon Reader: Animal Social Learning: Implications for Understanding Others
PANEL 3: Sea to Land to Air
WORKSHOP 3: Steven M. Wise: Nonhuman Personhood
Tomoko Ohyama: Action Selection in a Small Brain (Drosophila Maggot)
Mike Ryan: “Crazy Love”: Nonlinearity and Irrationality in Mate Choice
Louis Lefebvre: Animal Innovation: From Ecology to Neurotransmitters
PANEL 4: Maggots, Frogs and Birds: Flexibility Evolving
SPECIAL EVENT: Mario Cyr: Polar Bears
Colin Chapman: Why Do We Want to Think People Are Different?
Vladimir Pradosudov: Chickadee Spatial Cognition
Jonathan Balcombe: The Sentient World of Fishes
PANEL 5: Similarities and Differences
WORKSHOP 5 (part 1): Gary Comstock: A Cow’s Concept of Her Future
WORKSHOP 5 (part 2): Jean-Jacques Kona-Boun: Physical and Mental Risks to Cattle and Horses in Rodeos
Joshua Plotnik: Thoughtful Trunks: Application of Elephant Cognition for Elephant Conservation
Lori Marino: Who Are Dolphins?
Larry Young: The Neurobiology of Social Bonding, Empathy and Social Loss in Monogamous Voles
Panel 6: Mammals All, Great and Small
WORKSHOP 6: Lori Marino: The Inconvenient Truth About Thinking Chickens
Andrew Adamatzky: Slime Mould: Cognition Through Computation
Frantisek Baluska & Stefano Mancuso: What a Plant Knows and Perceives
PANEL 7: Microbes, Molds and Plants
WORKSHOP 7: Suzanne Held & Michael Mendl: Pig Cognition and Why It Matters
James Simmons: What Is It Like To Be A Bat?
Debbie Kelly: Spatial Cognition in Food-Storing
Steve Phelps: Social Cognition Across Species
PANEL 8: Social Space
WORKSHOP 8: To be announced
Lars Chittka: The Mind of the Bee
Reuven Dukas: Insect Emotions: Mechanisms and Evolutionary Biology
Adam Shriver: Do Human Lesion Studies Tell Us the Cortex is Required for Pain Experiences?
PANEL 9: The Invertebrate Mind
WORKSHOP 9: Delcianna Winders: Nonhuman Animals in Sport and Entertainment
Carel ten Cate: Avian Capacity for Categorization and Abstraction
Jennifer Mather: Do Squirrels Have a Sense of Self?
Steve Chang: Neurobiology of Monkeys Thinking About Other Monkeys
PANEL 10: Others in Mind
WORKSHOP 10: The Legal Status of Sentient Nonhuman Species