7-2012

The Welfare of Intensively Confined Animals in Battery Cages, Gestation Crates, and Veal Crates

Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/agreports

Part of the Agribusiness Commons, Animal Studies Commons, and the Operations and Supply Chain Management Commons

Recommended Citation
Available at: https://www.wellbeingintlstudiesrepository.org/agreports/vol2012/iss2012/5

This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org.
An HSUS Report: The Welfare of Intensively Confined Animals in Battery Cages, Gestation Crates, and Veal Crates

Abstract

Within U.S. animal agriculture, the majority of egg-laying hens, pregnant sows, and calves raised for veal are reared in battery cages, gestation crates, and veal crates, respectively. The intensive confinement of these production systems severely impairs the animals’ welfare, as they are unable to exercise, fully extend their limbs, or engage in many important natural behaviors. As a result of the severe restriction within these barren confinement systems, animals can experience significant and prolonged physical and psychological assaults. Indeed, extensive scientific evidence shows that intensively confined farm animals are frustrated, distressed, and suffering.

Introduction

Surveys of public opinion clearly indicate that Americans care for the welfare of animals raised for food. This interest in the well-being of farm animals has grown as many aspects of U.S. production practices have become increasingly inhumane. Though certain corporate and industry trends have begun to reflect Americans’ desire for better treatment of farm animals, much of industrial agribusiness continues to view them as commodities, rather than sentient individuals capable of experiencing joy and frustration, pain and suffering.

Indeed, favoring productivity over welfare in U.S. agriculture has had major consequences for farm animals, yet some agribusiness proponents continue to equate the ability of animals to gain weight or lay eggs as indicative of good welfare. With the genetic selection of rapid growth characteristics and high rates of lay for almost all breeds of commercially raised farm animals, these animals will reproduce and grow, as well as produce eggs, even when intensively confined and struggling with demonstrably compromised welfare. Throughout animal agriculture there are abundant examples where animals are highly productive, yet still suffer. For example, a laying hen will continue to draw calcium from her bones to make egg shells even though minerals are depleted to the point that her skeletal integrity is compromised, leaving her prone to bone fractures. Cambridge University Professor of Animal Welfare Donald Broom asserts, “[E]fforts to achieve earlier and faster growth, greater production per individual, efficient feed conversion and partitioning, and increased prolificacy are the causes of some of the worst animal welfare problems.”

Equating productivity with good welfare is not a scientifically grounded theory. Productivity is often measured at the group level, which does not accurately reflect individual welfare. For example, if individual hens are crowded to the point that their individual rates of lay decline, the productivity of the entire house will still improve as there are more hens laying eggs. Similarly, pigs may be crowded into a barn to the point that their individual growth and reproduction is reduced, yet the performance of the herd as a whole will increase. According to Bernard Rollin, University Distinguished Professor of Philosophy, Physiology, and Animal Sciences at Colorado State University, “in industrial agriculture, this link between productivity and well-being is severed. When productivity as an economic metric is applied to the whole operation, the welfare of the individual animal is ignored.”
The breadth of scientific evidence demonstrating that intensively confined animals are frustrated, distressed, and suffering under modern production schemes is extensive.19,20,21,22,23,24,25 conclusively substantiating that battery cages for egg-laying hens and crates for pregnant sows and calves are simply not appropriate environments.

All animals have behavioral needs, internally motivated behaviors that persist in any environment, akin to the need of migratory birds to migrate, for example.26 Some behaviors are so important that animals will suffer either psychologically or physically if prevented from displaying them. Indeed, animals are strongly driven to perform such necessary, natural behaviors even after basic physiological requirements are met, such as the provision of food, water, and shelter.27

In the United States, the overwhelming majority of the nation’s 283 million egg-laying hens28 are reared in barren, wire battery cages so restrictive29 that the birds cannot even spread their wings.30 With no opportunity to exercise or engage in many other natural behaviors, these caged birds suffer immensely, as do intensively confined breeding sows and calves raised for veal. More than 5.8 million pigs are used for breeding in the U.S. pork industry,31 and the majority32,33 of breeding sows are confined in 0.6 m (2 ft) wide gestation crates, narrow enclosures that prohibit the pregnant animals from even turning around34 for nearly the entirety of their approximately four-month (112-115 day)35 pregnancies. Similarly, many calves raised for veal in the United States are severely restricted in individual crates,36,37 unable to fully rotate their bodies or lie down comfortably in a natural position.38,39,40

The welfare of these intensively confined hens, sows, and calves is significantly impaired, as the animals are denied the ability to exercise, fully extend their limbs or simply turn their bodies, or perform integral, instinctual, natural behaviors.41 The forced near-immobilization may take a serious physical and psychological toll, leading both to physiological problems and psychosis resulting from extreme boredom and frustration.42

As of 2012, barren battery cages are now illegal in the entire European Union,43 as are gestation crates by 2013.44 Veal crates were banned starting in 2007.45 Domestically, Colorado,46 Arizona,47 Michigan,48 and Maine49 are requiring producers to phase out the use of gestation crates and veal crates, and Florida,50 Oregon,51 and Rhode Island52 have similar measures phasing out gestation crates. California and Michigan are also phasing out the use of battery cages, in addition to gestation crates and veal crates.53,54 In Ohio, there is a moratorium on the construction of new battery cage facilities, as well as a gradual phase out of gestation crates and veal crates.55

Battery cages are small, barren wire enclosures. The most commonly used cages hold 5-10 birds.56 A typical U.S. egg farm contains thousands of these cages at an average space allowance of just 432-555 cm2 (67-86 in2) per bird,57 which affords each hen an amount of floor space smaller than a single sheet of letter-sized paper. These cages prevent the birds from fully performing the bulk of their natural behaviors, including nesting, perching, dust-bathing, scratching, foraging, exploring their environment, running, jumping, flying, stretching, wing-flapping, and even freely walking—natural behaviors replaced by inactivity or inappropriate substitutes on the barren cage floor. Additionally, the severe restriction of physical movement leads to poor foot condition58 and metabolic disorders, including disuse osteoporosis59 and liver damage.60
Behavioral Deprivation

The central problem associated with the use of battery cage systems for housing laying hens is the severe restriction of movement and deprivation of opportunity to display important natural behaviors. The most well-documented behavioral need of the laying hen is to engage in nesting behavior, which is her requirement to seek out a secluded site in which to carefully scrape out and build a shallow nest on the ground. Nesting behavior is triggered internally by hormonal fluctuations associated with ovulation. The internal, biological signals to perform nest-site selection and nesting behavior are always present, even in the restrictive confines of the battery cage, where natural stimuli are absent. Studies have shown that hens are highly motivated to gain access to a nest site when they are about to lay an egg. Ian Duncan, Emeritus Chair in Animal Welfare at the University of Guelph, contends that the most significant source of frustration for battery hens is “undoubtedly the lack of nesting opportunity.” According to Michael Baxter, Director of the Design Research Center at Brunel University, the thwarting of nesting behavior is likely to cause “significant suffering.” Decades of scientific studies suggest that hens are frustrated, distressed, and that they suffer in battery cages as there is no outlet for normal, internally triggered nesting behavior.

Their inability to nest is just one of many behaviors prevented when laying hens are confined in battery cages. The enclosure’s wire flooring deprives the birds of the opportunity to express normal foraging, scratching, and dustbathing behaviors. The natural urge to forage and scratch remains strong, despite the presence of a complete diet fed *ad libitum*. Studies have shown that hens will choose to forage for feed on the ground in loose substrate rather than eat identical food freely available in a feeder. Dustbathing is also important to hens. Under naturalistic conditions, hens regularly bathe in dust to keep their feathers in good condition, and caged hens still retain the natural urge to dustbathe, even when the stimulus of litter is not present. In fact, battery-caged hens will try to dustbathe on the wire floor of the cage, sometimes leading to plumage degradation. The best experimental evidence suggests that the function of dustbathing is to balance lipid levels in the feathers. However, even featherless chickens will dustbathe, demonstrating that the need to perform the behavior is not based solely on external triggers, such as plumage condition or the presence of ectoparasites in the feathers, and is at least partially controlled internally by physiological factors.

Battery cages also prohibit hens from perching and roosting, natural behaviors of the hen under free-range conditions. The scientific literature suggests that the foot of a hen is “anatomically adapted to close around a perch”—that is, their feet evolved to clutch onto branches. Perch use is important for maintaining bone volume and bone strength. Toe pad hyperkeratosis is a thickening of skin on the feet of hens, and it has been demonstrated to be worse in cages where hens stand on wire flooring than in systems that allow birds to perch. Baxter asserts that hens without access to perches are shown to suffer reduced welfare from “increased aggression [as perches serve as a refuge for subordinate hens], reduced bone strength, impaired foot condition and higher feather loss.”

Fully performing comfort behaviors, such as stretching, wing-flapping, and preening, are impaired in the battery-cage environment. These behaviors are important for body maintenance and care of the feathers. Preference testing has found that hens prefer more space when given the opportunity to choose between enclosures that differ in size and, when given enough space, will engage in more comfort behaviors.

Metabolic Disease

Hens in cages are so intensively confined that they have no opportunity to exercise. One study demonstrated that birds in a cage-free, perchy system moved on average seven times as far as the comparison group kept in cages. Caged hens are not exposed to the normal range of physical forces and dynamic loading that strengthen and structure their bones. The scientific literature provides ample evidence that restriction of normal movement to the extent found in cages causes physical harm in the form of bone fragility and impaired bone strength. While all hens selectively bred for egg production are prone to osteoporosis-induced skeletal weakness, caged hens are at greater risk due to lack of exercise. Several studies have compared the bone strength of caged hens to those in perchy and deep-litter systems and concluded that bone strength is severely
reduced in caged birds.103,104,105 Osteoporosis is so severe in caged hens that in one study, approximately one out of every four birds removed from their cages at the end of the laying period suffered from broken bones.106

Caged hens also suffer from cage layer fatigue, a disorder in which the skeletal system becomes critically weakened, often leading to fractures, paralysis, and death.107,108 Cage layer fatigue was identified when laying hen flocks were first moved into cages in the 1950s, and it continues to be a “major issue.”109 Another disorder that is primarily associated with caged hens is fatty liver hemorrhagic syndrome (FLHS). Caged hens on high-energy diets are the most frequently affected by this disease,110 and multiple sources suggest that restriction of movement and lack of exercise are factors that predispose the birds to FLHS.111,112,113

Summary: Laying Hens

There is a strong argument firmly based on extensive scientific evidence that cages are not appropriate environments for laying hens. The most recent comprehensive analysis of the welfare of laying hens in cages and alternative systems was the LayWel project, a collaborative effort among working groups in seven different European countries that examined data collected from 230 different hen flocks. After reviewing all of the current science, the report concluded:

> With the exception of conventional cages, we conclude that all systems have the potential to provide satisfactory welfare for laying hens….Conventional cages do not allow hens to fulfil behaviour priorities, preferences and needs for nesting, perching, foraging and dustbathing in particular. The severe spatial restriction also leads to disuse osteoporosis. We believe these disadvantages outweigh the advantages of reduced parasitism, good hygiene and simpler management. The advantages can be matched by other systems that also enable a much fuller expression of normal behaviour. A reason for this decision is the fact that every individual hen is affected for the duration of the laying period by behavioural restriction. Most other advantages and disadvantages are much less certain and seldom affect all individuals to a similar degree.114

Indeed, in addition to the findings of the LayWel project, many other experts agree that, in general, hen welfare is compromised more in cages than in properly managed alternative systems115,116 and that the differences between cage and cage-free systems are such that there is a clear welfare advantage for hens who are not confined in cages.117 According to Michael Appleby, former Senior Lecturer in Farm Animal Behavior at the University of Edinburgh:

> Battery cages present inherent animal welfare problems, most notably by their small size and barren conditions. Hens are unable to engage in many of their natural behaviors and endure high levels of stress and frustration. Cage-free egg production, while not perfect, does not entail such inherent animal welfare disadvantages and is a very good step in the right direction for the egg industry.118

For the first time in U.S. history, battery cages were banned by a November 2008 ballot measure in the state of California, by a nearly two-to-one margin. The intensive confinement system will be disallowed effective January 1, 2015.119,120,121 The state of Michigan followed, with passage of state legislation in October 2009 that will phase out battery cages within ten years.122 In Ohio, new battery cage facilities are not permitted.123 Many major food retailers have also pledged to increase their use of cage-free eggs, including Sonic, Ruby Tuesday, Kraft and ConAgra Foods. Unilever is switching to 100% cage-free eggs for its Hellmann’s light mayonnaise brand, and Wal-Mart and Costco have switched their private-label eggs to 100% cage-free.124 In 2012 Burger King announced that it would transition to using only cage-free eggs.125
The Welfare of Pregnant Sows in Gestation Crates*

More than 5.8 million pigs are used for breeding in the U.S. pork industry. During their nearly four-month pregnancies, most breeding sows are confined in gestation crates, individual, concrete-floored metal cages 0.6 m (2 ft) wide by 2.1 m (7 ft) long, just slightly larger than the animal and so severely restrictive that the sow is unable to turn around. Crated sows suffer a number of significant welfare problems, including elevated risk of urinary tract infections, weakened bones, lameness, behavioral restriction, and stereotypies.

Although the use of gestation crates is being phased out throughout the European Union due to welfare concerns (with a total ban effective in 2013 applicable after the fourth week of pregnancy), they remain a customary animal agribusiness practice in the United States. However, a clear trend toward alternative housing systems is becoming evident. Smithfield Foods, the world’s largest pig producer, and Maple Leaf, the largest pig producer in Canada, have pledged to phase-out their confinement of sows in gestation crates, as have Cargill and Hormel, companies that together are reported to make up one-third of the processed pork market. Said Smithfield Foods CEO Larry Pope, “Our own research has demonstrated that group pens are as good as individual gestation stalls in caring for pregnant sows.” Many large food retailers have also committed to reducing or ending their purchases of meat from suppliers using gestation crates. For example, Celebrity chef Wolfgang Puck has committed to purchasing pork from crate-free sources for all of his restaurants, and Burger King has begun purchasing crate-free pork in increasing quantities as supply becomes more consistent.

Physical Problems

The long-term, intensive confinement of breeding sows in gestation crates significantly impairs their health and welfare, primarily due to the animals’ inability to turn around or exercise. The severe restriction of movement leads to a reduction of muscle mass and considerable reduction of bone strength, making the most basic movements difficult and increasing the chance of a sow slipping and injuring herself. Successive pregnancies exacerbate the problems of diminished muscle mass and bone strength.

As gestation crates are barely larger than the sow’s body, she must urinate and defecate where she stands. As such, the concrete flooring of the crates are often either partially or fully slatted, designed to allow waste to fall through. Living directly above the excrement pit may expose sows to averively high levels of ammonia, and respiratory disease has been found to be a major health issue for pigs kept in confinement. Gestation-crated sows suffer from a higher rate of urinary tract infections than uncrated sows because they are inactive, drink less water, urinate infrequently, and may be in contact with their excrement. These infections can result in a high mortality rate, with one study estimating that half of mortalities were caused by urinary tract infections.

The unnatural flooring of gestation crates may cause damage to joints, lameness, and toe lesions that, according to one report, afflict up to 80% of crated sows. Erosion of the cement floor from water and feed leaves rocks and sharp edges that contribute to foot, leg, and shoulder sores. Bolts affixing the crates in place contribute to similar injuries, as does rubbing against the bars of their enclosures and standing or lying on barren flooring. As gestation crates are narrow and typically placed side-by-side in production facilities, when lying down, sows must extend their limbs into adjacent stalls where they may be stepped on. Discomfort can

be compounded by lack of bedding materials. Without bedding, sows have little thermal protection, which can cause systemic and local cold stress, and may contribute to or exacerbate injuries to skin and limbs. In addition to external injuries, gestation-crated sows show increased resting heart rate compared to group-housed sows, probably due to decreased muscle fitness from chronic lack of exercise, and are more likely to suffer decreased cardiovascular fitness than those group-housed.

Psychological Problems

When pigs are not confined, they are active and expressively curious animals. Scientific observation and research have found pigs to be intelligent, social animals, capable of learning complex tasks, perceiving time, and anticipating future events. When immobilized in gestation crates without environmental enrichment or mental stimulation, their psychological well-being is impaired.

Pigs would naturally segregate into small groups with stable dominance hierarchies. Under free-range conditions, sows spend approximately 31% of their time grazing, 21% rooting, 14% walking, and 6% lying down. Pigs root, bite, chew, and sniff at objects and the ground itself, both to forage and to generally explore their environment. Intensive confinement thwarts nearly all natural behaviors, including foraging and rooting, reducing daily activity to the time it takes a sow to eat her concentrated diet. When released from confinement into semi-natural enclosures, sows quickly engage in their natural behaviors, foraging, nest-building, and traveling long distances.

When behavioral needs are denied in such highly restrictive environments, animals may perform unnatural behaviors in place of the expression of normal patterns of activity. Stereotypies are characterized as movements or behaviors that are abnormal, repetitive, and seemingly have no function or goal. Researchers attribute these behaviors to boredom and frustration resulting from an impoverished environment, confinement, restraint, and unfulfilled needs. Stereotypic behaviors are more common among gestation-crated sows compared to those in group pens and include bar-biting, head-weaving, pressing their drinkers without drinking, and making chewing motions with an empty mouth (sham or vacuum chewing). The amount of time sows engage in stereotypies increases with the time spent in crates. This expression of abnormal behavior is widely accepted as a sign of psychological disturbance, frustration, and impaired welfare. By comparison, in situations where sows have greater freedom in more complex environments, the amount of stereotyped behavior is nearly zero.

Regarding stereotypies, the European Commission’s Scientific Veterinary Committee (SVC) noted, “The extent of stereotypy gives an indication of how poor the welfare is”—a finding corroborated by the American Veterinary Medical Association’s (AVMA’s) Task Force on the Housing of Pregnant Sows, which concluded that “stereotypies are an indication of welfare problems was a strong consensus among nearly all authors whose work was reviewed.” Georgia Mason, Canada Research Chair in Animal Welfare at the University of Guelph, and colleague write: “Until such research increases our understanding, stereotypies should always be taken seriously as a warning sign of potential suffering.”

Summary: Gestating Sows

Vast scientific evidence shows improved physical and psychological health when sows are not confined to gestation crates. Mobility is a physical requirement for all animals, and this basic fact is reflected in the concluding remarks of veterinary and scientific reviews of sow housing and welfare: The AVMA’s Task Force on the Housing of Pregnant Sows reported, “Gestation stalls, particularly when used in conjunction with feed restriction, may adversely affect welfare by restricting behavior, including foraging, movement, and postural changes,” and the SVC concluded, “Since overall welfare appears to be better when the sows are not confined throughout gestation, sows should preferably be kept in groups.”
Indeed, research has found that outdoor, crate-free systems and loose housing systems offer benefits to sow health and resilience. Compared with typical U.S. crate systems, deep-bedded, loose housing systems studied in Sweden result in lower cull rates and greater sow longevity. Commercial operations have also recorded better reproductive performance and lower mortality rates for sows in group pens rather than individual crates. Group pens with trickle feeding systems, individual feed stalls, and electronic sow feeders are all feasible options currently and successfully in use. Although some of these alternatives, particularly indoor housing in small groups, do not provide for every behavioral need, they are a marked improvement to the use of gestation crates and improve the physical well-being of the sow by allowing her to walk, turn around, and lie down more comfortably. In its review, the SVC reported that group housed sows “have more exercise, more control over their environment, more opportunity for normal social interactions and better potential for the provision of opportunities to root or manipulate materials…As a consequence, group-housed sows show less abnormality of bone and muscle development, much less abnormal behaviour, less likelihood of extreme physiological responses, less of the urinary tract infections associated with inactivity, and better cardiovascular fitness.”

The Welfare of Calves in Veal Crates*

As defined by the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS), veal “is the meat from a calf or young beef animal. A veal calf is raised until about 16-18 weeks of age, weighing up to 450 pounds [204 kg]. Male dairy calves are used in the veal industry. Dairy cows must give birth to continue producing milk, but male dairy calves are of little or no value to the dairy farmer. A small percentage are raised to maturity and used for breeding.” More than 450,000 calves are raised for veal in the United States annually.

Intensive confinement of calves raised for veal has long raised pointed concerns regarding the animals’ welfare. Presently, many calves raised for veal in the United States are confined in individual crates typically measuring approximately 66-76 cm (2.1-2.5 ft) wide. In 2006, Arizona voters approved the nation’s first state-wide veal crate ban. Colorado followed in 2008 with a ten-year phase-out banning veal crates, and in November of that year, California voters passed a ballot measure that bans veal crates, which takes effect on January 1, 2015. Maine followed in May 2009 and passed a law banning veal crates for calves effective Jan. 1, 2011. Michigan followed in October 2009, with passage of state legislation that will phase out veal crates within ten years. The Livestock Care Standards Board in Ohio issued a rule requiring that calves raised for veal must be group housed by 10 weeks of age, starting December 31, 2017. Industry itself has also been moving away from their use. Two of the largest U.S. veal producers, Strauss Veal and Marcho Farms, have already pledged to phase out veal crates, and convert their operations to crate-free group housing due to animal welfare concerns. As reported by Meat Processing, Strauss Veal & Lamb International “is committed to raising veal calves in a more humane manner. The company’s goal is to be 100-percent converted to raising calves by the European-style, group-raised method within the next two to three years.” Randy Strauss, co-president and CEO, stated to the industry journal that “this is the right thing to do...The traditional way of raising veal calves involves putting each calf in an individual stall. This practice is increasingly being frowned upon by a growing number of customers and consumers alike throughout the world.” Industry journal Feedstuffs reported eight months later that the American Veal Association’s board of directors “unanimously approved new policy that the veal industry fully transition to group housing production by the end of 2017.” In 2012 the American Veal Association announced that 70% of veal calves raised by its members would be housed in group pens by the end of the year.

Crated calves are typically tied to the front of the crate with a short tether, restricting virtually all movement. Stressful conditions lead to high incidence of stereotypic behavior and illness. In its 1995 report, the SVC concluded:

The welfare of calves is very poor when they are kept in small individual pens with insufficient room for comfortable lying, no direct social contact and no bedding or other material to manipulate. Every calf should be able to groom itself properly, turn around, stand up and lie down normally and lie with its legs stretched out if it wishes to do so.

Impacts of Intensive Confinement

Confining calves to crates, where they remain nearly immobilized until they reach slaughter weight, presents many welfare problems. One of the greatest deprivations individually housed calves suffer is the ability to adopt their preferred lying posture and to stand and lie down naturally. As a primary purpose of lying down is to relax certain muscles, the restrictions that crates and tethers place on most normal lying postures of calves may impede full relaxation of the body and prevent the animals from lying comfortably. For all young mammals, rest is critical, and sleep disruption may occur if certain lying positions cannot be adopted. Lying posture is also very important for thermoregulation, as overheated calves adopt positions that maximize the surface area from which heat can be lost. Such positions usually involve stretching out the legs laterally.

Calves, like all young mammals, have a need for regular exercise, which helps reduce problems associated with inactivity, such as abnormal bone and muscle development and joint disorders. Intensive confinement systems prohibit exercise and normal muscle growth. When given space, healthy calves will play, gallop, buck, and kick, and when with other calves, they will also engage in play fighting. In contrast, when closely confined for prolonged periods, these normal behaviors are thwarted, resulting in an intensification of the drive to perform these activities. Cattle are social animals who obtain physical, physiological, and psychological comfort from each other. Under natural conditions, calves would associate in groups during the day from two weeks of age while their mothers forage and would begin to form relationships with their peers. For calves raised without their mothers, social contact with other calves is of even greater importance. Confining calves prevents the animals from adequate social contact, and researchers from the Danish Institute of Agricultural Sciences and the University of Copenhagen in Denmark found that calves were willing to work to gain access to social contact. They concluded that “calves’ welfare may be threatened if they are not allowed to perform social behaviors, and since motivation is apparently higher for full social contact than for head contact it is likely that their welfare will be better if housed in groups.”

In order to maintain personal hygiene and help prevent disease, calves groom themselves, principally by licking. Cattle naturally lick all the parts of their body they can reach, though tethered calves are unable to groom the hind parts of their body because of restrictions imposed by the stall and tether. Excessive licking of the forelegs, a redirected behavior, is common in stall and tether systems.

The chronic deprivation of needs and behaviors can lead to stress. Texas A&M University Department of Animal Science Professor Ted Friend and associates found that calves tethered in stalls had higher adrenal responses than group-housed calves, as well as increased levels of thyroid hormones and a higher neutrophil to lymphocyte ratio, another physiological indicator of chronic stress.

Young calves are susceptible to pathogens and individual housing is used, in part, because it may help to reduce the transmission of pathogenic organisms by minimizing animal-to-animal contact. The slatted partitions do not protect against airborne transmission, however, and calves in crates still have head to head contact. Friend and colleague conclude: “Thus, there remain many avenues for transmission of disease in most crate-housing systems.”

An HSUS Report: The Welfare of Intensively Confined Animals in Battery Cages, Gestation Crates, and Veal Crates
Summary: Calves Raised for Veal

The cruelty of the veal crate is well-established. Nearly two decades ago, Friend testified before a legislative committee, explaining the results of his study on veal calf welfare funded by the U.S. Department of Agriculture:

Our results show that calves have a very strong drive to move or exercise that is blocked by chronic close confinement. The studies also found that maintaining calves in close confinement causes adverse physiological effects that alter metabolism and reduce the ability of the calf’s immune system to respond to disease. All of these are changes in the body that are indicative of chronic stress….We also found that all of the symptoms of chronic stress were eliminated after the calves were removed from the crates….To summarize, our studies found that maintaining calves in crates is physically detrimental to the calf, something that is common knowledge in the industry.246

The customary veal production practices in the United States of close, restrictive confinement and social isolation have been widely criticized on animal welfare grounds. They are currently illegal in all 27 countries of the European Union.247,248

Studies clearly show that eliminating crates and switching to group housing would benefit calves.249 Group-housed calves have the opportunity for locomotion, social behavior, and more comfortable lying positions.250 In its Report on the Welfare of Calves, the SVC wrote: “[G]eneral comparisons indicate that the housing of calves in individual pens, and the tethering of calves, results in problems for their welfare which are significantly reduced when the calves are group-housed on straw.”251

Conclusion

In the absence of any federal laws regulating the on-farm treatment of the billions of animals raised for meat, eggs, and milk, farm animals suffer immensely.

Animals, including those farmed, are fully capable of feeling pain and suffering252,253,254 as well as positive emotions.255,256 Intensively confined farm animals undoubtedly suffer as would dogs or cats if continuously kenneled without the opportunity to exercise or even engage in the most basic of movements.

Battery cages for hens and crates for calves and sows are inherently flawed. These barren, restrictive housing systems so severely impair normal movement that the expression of nearly all normal behaviors are thwarted, leading to significant and prolonged physical and psychological assaults. Adequate welfare of a hen in a battery-cage or a sow or a calf in a crate simply cannot be provided, and the scientific literature, particularly in the field of ethology, is very clear on this point. Alternative production systems exist for each of these forms of confinement, and forward-thinking producers are already moving toward housing practices that allow fuller expression of most forms of meaningful natural behavior.257 Addressing the many welfare concerns with intensive confinement practices258,259,260 necessarily mandates industry shifts away from the intensive confinement of laying hens, pregnant sows, and calves raised for veal in battery cages, gestation crates, and veal crates, respectively.

After a comprehensive two-year study, the independent Pew Commission on Industrial Farm Animal Production, a project of The Pew Charitable Trusts and the Johns Hopkins Bloomberg School of Public Health chaired by former Kansas Governor John Carlin and including former U.S. Agriculture Secretary Dan Glickman, concluded that cages and crates should be phased out:

After reviewing the literature, visiting production facilities, and listening to producers themselves, the Commission believes that the most intensive confinement systems, such as restrictive veal crates, hog
gestation pens, restrictive farrowing crates, and battery cages for poultry, all prevent the animal from a normal range of movement and constitute inhumane treatment.261

An HSUS Report: The Welfare of Intensively Confined Animals in Battery Cages, Gestation Crates, and Veal Crates

Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

Knowles TG and Broom DM. 1990. Limb bone strength and movement in laying hens from different housing systems. The Veterinary Record 126(15):354-6.

An HSUS Report: The Welfare of Intensively Confined Animals in Battery Cages, Gestation Crates, and Veal Crates

The Humane Society of the United States is the nation’s largest animal protection organization—backed by 11 million Americans, or one of every 28. For more than a half-century, The HSUS has been fighting for the protection of all animals through advocacy, education, and hands-on programs. Celebrating animals and confronting cruelty. On the Web at humanesociety.org.