The Problem of Pain: What Do Animals Really Feel?

Dana H. Murphy

Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_asie

Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal Sciences Commons

Recommended Citation
During the 3-year period from 1975 to 1977, J.M. Schaef er, R.D. Andrews, and J.J. Dinimore investigated the realities behind the claims of southern Iowa producers about losses of sheep to coyotes and dogs. Among other things, the study (published in J Wild Manage 45(4):883-893, 1981) attempted to compare the relative validity of data from several reporting methods—a one-time questionnaire, monthly postcard surveys, and records of domestic-animal claims—as opposed to the findings from necropsies performed by the authors.

Forty-one percent of the questionnaire respondents reported that they had had one or more sheep killed by predators in 1975 (average, 7.6 sheep). Of this group, 63 percent attributed the losses to coyotes, while 25 percent reported that dogs were responsible; only 12 percent attributed predation losses to a mix of both coyotes and dogs.

However, other survey methodologies provide a somewhat different view. Both the records and necropsies of respondents’ sheep and the domestic-animal claims records revealed that dogs killed more sheep per reported incident and more sheep per incident than did coyotes.

For example, predator attacks on pastured sheep will often induce the sheep to return to the nighttime bedding area, whether it is located in the pasture or in a corral. Sheep that have been subjected to several attacks may also show reluctance to leave an enclosure, even during normal feeding times.

There are some recognizable indicators that a coyote, rather than a dog, has been responsible for a particular sheep killing. One point that is stressed repeatedly in the pamphlet is the broad range of feeding patterns among coyotes, such that they must always be considered, and dealt with, on an individual basis. Some coyotes may kill sheep on a regular basis, while others may live out their whole lives and never touch one sheep. Dogs, however, seem to enjoy attacks as an end in itself, rather than actually seeking a required food source. Often, many sheep will be injured by the typical scatter-shot attack of a dog. This pattern may explain the finding in the authors’ survey study, that dogs were reported by ranchers to have killed more sheep per incident than did coyotes.

To help tell dog tracks from those of a coyote, how to differentiate hair and feces, feeding patterns, and kinds of wounds inflicted are also covered. Then the authors list some of the newer ways of protecting sheep from all predators, such as confinement, guard dogs, and aversive devices.

One interesting aspect of the whole coyote problem that emerges from these two publications is that it is a lot easier to get compensation for sheep lost to coyotes than for those killed by uncontrolled dogs. In the latter case, the rancher must prove, with substantiation by a witness, that a specific dog was the culprit. This, it would seem, is no easy task.
a highly detailed picture of the mechanisms of pain reception and conduction in the peripheral nervous system and a somewhat more sketchy, but nevertheless substantial, body of knowledge about primates. Interpretation of incoming pain signals in the CNS. In addition, we have comparative data on how species of varying levels of complexity perceive and respond to noxious stimuli. And we have learned that there is no species in which pain perception, and the subsequent response, is a simple process. For example, it has recently been discovered that a great number of species—even those quite phylogenetically remote from humans—secret a class of biochemicals that are used to make sophisticated and minute adjustments in selecting which pain signals are transmitted to the CNS, and at what level of intensity. Attacking the problem from a different perspective, behaviorists have designed elegant experiments, using avoidance mechanisms, that can test an animal’s thresholds for painful stimuli and furnish answers to questions about issues such as memory of pain, and the amount of “anxiety” an animal feels when placed in an environment where a painful stimulus was previously applied. With all this accretion of knowledge from older work as well as from more recently developed techniques, we can be reasonably certain that animals, when exposed to noxious stimuli, do indeed sense something that contains many of the elements that humans would list as components of consequences of pain. These include physical discomfort, negative affect, and the formulation of avoidance strategies. While it may present a real challenge to learn how to translate the “language” (internal and external signals) that each individual species uses as part of its own particular way of perceiving and responding to painful stimuli, especially when a given species is remote from humans, it can be, and is being done. Further, these efforts can be of immediate use for drafting workable guidelines on the kinds and levels of pain laboratory animals ought to be allowed to endure.

The Basic Physiology of Pain—Nociceptors

For all species, pain can be considered as an adaptive response that functions to promote the avoidance of injury and potentially dangerous situations, as well as to protect damaged parts after an injury has occurred. Sharp pain tells an animal that it has entered into a dangerous situation. Dull, chronic pain indicates a need for rest and self-protection (Report of the Panel of Enquiry into Shooting and Angling, RSPCA, U.K., 1980). Only the intractable pain of diseases associated primarily with old age (such as cancer) appears to have little adaptive value. But under natural conditions, few animals (including primitive man) would survive long enough to experience this kind of pain.

Pain is first perceived in the body via specialized receptors of the peripheral nervous system, termed nociceptors. Located primarily in skin and mucous membranes, they are sensitive to different very little from similar receptors also found in skin, which detect other sensations such as low-intensity heat and pressure. Although similar structures have been found in other vertebrates including fish, their anatomical similarity to other receptors has so far made it impossible to tell if they are responsible for sensing and transmitting “noxious stimuli.” I.E. Krueger (University of California, Davis) is utilizing the electron microscope to elucidate the specific structure and function of the various types of nociceptors. Krueger also uses microelectrodes, in conjunction with horseradish peroxidase and lectin transport techniques, to study the stimulus threshold of single nociceptor fibers, the conduction pathways of individual fibers after stimulation, and the average conduction speeds of the different fiber types. Among other findings, he has discovered that each spot on a nociceptor axon has a different level of excitability—excitability zones are intermixed with unexcitable areas in a highly complex pattern. Physiologically, the nociceptors differ from other receptors in that they have a higher threshold for stimulation.

Sensations such as heat must reach an intensity sufficient to produce possible damage to tissue before impulses will begin to pass along nociceptor axons. The speed of the nerve fibers has been correlated with the type of pain perceived. The A-delta fibers, which are coated with thin myelin sheaths (and are therefore better conductors of impulses), are associated with rapid conduction of impulses and sharp pain. The activation of unmyelinated, C fibers (which are slower conductors) tends to be associated with aching, long-lasting pain.

When cells near the nociceptors are damaged, they release many kinds of biochemicals. Among these is a specific protein (peptide), bradykinin, which serves as the chemical transmitter that causes the pain receptor to discharge. When injected into humans, bradykinin causes instantaneous and extreme sensations of pain, even in the presence of concurrent anesthesia. Extrapolating from these data, we might expect that a test performed on the skin, these appear to be effective. Bradykinin might constitute one type of reliable proof that a given species possesses the basic rudiments of biochemical pain transmission.

A second peptide, substance P, has also been implicated in the transmission of nerve signals indicative of pain. It serves as the neurotransmitter between the afferent pain-sensing nerve and the spinal cord. The presence of this biochemical could therefore possibly serve as a second indicator of pain-sensing mechanisms in a species.

Impulse Transmission Through the Cord

The impulses that originate at the nociceptors located in the skin travel to the spinal cord, via the dorsal roots. The axons of these nerves may extend directly to the brain or they may make various kinds of interconnections with other spinal cord cells, and the intensity of the pain can be modified in the process. Pain signals then proceed on to the brain, through one of several ascending tracts of the cord.

It is at this point in the anatomy of impulse transmission that some inter-species differences appear. The lateral spinothalamic (or neospinothalamic) tract, which carries impulses to the thalamus of the brain, is highly developed in primates, but only rudimentarily in some species like the cat (J. Vierck, J Am Vet Med Assoc 163:505-513, 1976). This tract seems to be most important for fast conduction of data related to localization, orientation, and quick reactions to potentially damaging stimuli. On the other hand, the spinoreticulothalamic (paleospinothalamic) tract is more likely to carry information related to activation of arousal and emotional systems, since this tract terminates in the brain areas (the limbic system and hypothalamus) that participate in the mediation of emotions and expression.

In rats, K.L. Casey (University of Michigan) reports that areas of the cord containing both the neospinothalamic and paleospinothalamic tracts can be severed, and the animals will still recover. The several pain conduction pathways that pass directly to the brain are located in the peripheral nerves, as well as in the cord.

The several pain conduction tracts of the cord terminate in various areas of the brain, such as the reticular formation, a fundamental relay center which controls respiration, heart activity, and blood pressure and which may be involved in the conscious perception of pain (T.A. Yoxall, 1978). Also involved is the limbic system, which is concerned with factors such as memory, attention, and emotion: One component of the limbic system is the thalamus. Finally, through connections from the thalamus to the higher centers of the brain, or cortex, pain can influence thought and decision-making processes.

Here, again, we see some differences among species. For example, nerves of the spinothalamic tract end in different areas within the thalamus, depending upon the type of animal. In primates, the tract terminates in the ventral posterolateral (VPL) nucleus of the thalamus, whereas in carnivores it ends in a thin
a highly detailed picture of the mechanisms of pain reception and conduction in the peripheral nervous system and a somewhat more sketchy, but nevertheless substantial, body of knowledge about primates' interpretation of incoming pain signals in the CNS. In addition, we have comparative data on how species of varying levels of complexity perceive and respond to noxious stimuli. And we have learned that there is no species in which pain perception, and the subsequent response, is a simple process. For example, it has recently been discovered that a great number of species—even those quite phylogenetically remote from humans—secrete a class of biochemicals that are used to make sophisticated and minute judgments in selecting which pain signals are transmitted to the CNS, and at what level of intensity. Attacking the problem from a different perspective, behavioralists have designed elegant experiments, using avoidance mechanisms, that can test an animal’s threshold to painful kinds of pain stimuli and furnish answers to questions about issues such as memory of pain, and the amount of “anxiety” an animal feels when placed in an environment where a painful stimulus was previously applied.

With all this accretion of knowledge from older work as well as from more recently developed techniques, we can be reasonably certain that animals, when exposed to noxious stimuli, do indeed sense something that contains many of the elements that humans would list as components of consequences of pain. These include physical discomfort, negative affect, and the formulation of avoidance strategies. While it may present a real challenge to learn how to translate the “language” (internal and external signals) that each individual species uses as part of its own particular way of perceiving and responding to painful stimuli, especially when a given species is remote from humans, it can be, and is being done. Further, these efforts can be of immediate use for drafting workable guidelines on the kinds and levels of pain laboratory animals ought to be allowed to endure.

The Basic Physiology of Pain—Nociceptors

For all species, pain can be considered as an adaptive response that functions to promote the avoidance of injury and potentially dangerous situations, as well as to protect damaged parts after an injury has occurred. Sharp pain tells an animal that it has entered into a dangerous situation. Dull, chronic pain indicates a need for rest and self-protection. *(Report of the Panel of Enquiry into Shooting and Angling, RSPCA, U.K., 1980).* Only the intractable pain of diseases associated primarily with old age (such as cancer) appears to have little adaptive value. But under natural conditions, few animals (including primitive man) would survive long enough to experience this kind of pain.

Pain is first perceived in the body via specialized receptors of the peripheral nervous system, termed nociceptors. Located to the skin, these pain receptors are very little from similar receptors also found in skin, which detect other sensations such as low-intensity heat and pressure. Although similar structures have been found in other vertebrates including fish, their anatomical and physiological similarity to other receptors has so far made it impossible to tell if they are responsible for sensing and transmitting “noxious stimuli.” L.E. Krueger (University of California, Davis) is utilizing the electron microscope to elucidate the specific structure and function of the various types of nociceptors. Krueger also uses microelectrodes, in conjunction with horseradish peroxidase and lectin transport techniques, to study the stimulus threshold of single nociceptor fibers, the conduction pathways of individual fibers after stimulation, and the average conduction speeds of the different fiber types. Among other findings, he has discovered that each spot on a nociceptor axon has a different level of excitability—excitable zones are intermixed with unexcitable areas in a highly complex pattern. Physiologically, the nociceptors differ from other receptors in that they have a higher threshold for stimulation.

Sensations such as heat must reach an intensity sufficient to produce possible damage to tissue before impulses will begin to pass along nociceptor axons. The conduction of the nerve fibers has been correlated with the type of pain perceived. The A-delta fibers, which are coated with thin myelin sheaths (and are therefore better conductors of impulses), are associated with rapid conduction of impulses and sharp pain. The activation of unmyelinated, or C fibers (which are slower conductors) tends to be associated with aching, long-lasting pain.

When cells near the nociceptors are damaged, they release many kinds of biochemicals. Among these is a specific protein (peptide), bradykinin, which serves as the chemical transmitter that causes the pain receptor to discharge. When injected into humans, bradykinin causes instantaneous and extreme sensations of pain, even in the presence of concurrent anesthesia. Extrapolating from these data, we can infer that related peptides in the skin, such as bradykinin and related peptides, might constitute one type of reliable proof that a given species possesses the basic rudiments of biochemical pain transmission.

A second peptide, substance P, has also been implicated in the transmission of nerve signals indicative of pain. It serves as the neurotransmitter between the afferent pain-sensing nerve and the spinal cord. The presence of this biochemical could therefore possibly serve as a second indicator of pain-sensing mechanisms in a species.

Impulse Transmission Through the Cord

The impulses that originate at the nociceptors located in the skin travel to the spinal cord via the dorsal roots. The axons of these nerves may extend directly to the brain or they may make various kinds of interconnections with other spinal cord cells, and the intensity of the pain may be modified in the process. Pain signals then proceed on to the brain, through one of several ascending tracts of the cord.

It is at this point in the anatomy of impulse transmission that some interspecies differences appear. The lateral spinothalamic (or neospinothalamic) tract, which carries impulses to the thalamus of the brain, is highly developed in primates, but only rudimentary in carnivores. In some species like the cat (J. Vierck, *J Am Vet Med Assoc* 168:510-513, 1976). This tract seems to be most important for fast conduction of data related to localization, orientation, and quick reactions to potentially damaging stimuli. The spinothalamic (paleospinothalamic) tract is more likely to carry information related to activation of arousal and emotional systems, since this tract terminates in the brain areas (the limbic system and hypothalamus) that participate in the mediation of emotions and expression.

In rats, L.K. Casey (University of Michigan) reports that areas of the cord containing both the neospinothalamic and paleospinothalamic tracts can be severed, and the animals will still recover. Here again, the species pain conduction pathways that pass directly to the brain are located in the peripheral nerves, as well as in the cord.

The several pain conduction tracts of the cord terminate in various areas of the brain, such as the reticular formation, a fundamental relay center which controls respiration, heart activity, and blood pressure and which may be involved in the conscious perception of pain (T.A. Yoxall, 1978). Also involved is the limbic system, which is concerned with factors such as memory, attention, and emotion. One component of the limbic system is the thalamus. Finally, through connections from the thalamus to the higher centers of the brain, or cortex, pain can influence thought and decision-making processes.

Here, again, we see some differences among species. For example, nerves of the spinothalamic tract end in different areas within the thalamus, depending upon the type of animal. In primates, the tract terminates in the ventral posterolateral (VPL) nucleus of the thalamus, whereas in carnivores it ends in a thin
area that forms a kind of shell around this nucleus. In rats, terminations of spinothalamic nerves are also found pre­dominantly in the VPL nucleus, but in an area that is located more toward the front of the animal’s head. W.O. Carstens (University of Texas Medical Branch, Galveston) reports that the area of the thalamus that is activated seems to be correlated, to some degree, with the nature and intensity of the behavioral response that ensues after the application of a painful stimulus. However, it is not possible at this time to make sweeping generalizations about how different animal species feel in the presence of noxious stimuli, or of how they are likely to react in terms of behavioral responses, solely on the basis of fine differences in neurophysiology, since we simply do not know the real signifi­cance of many of these differences. Perhaps most important, we have not yet discovered what degree of overlap in function and response may exist among the different anatomical areas of the different animal species. While we can be confident that many of the same nerve pathways are used to convey perceptions of pain in the various species. Although traveling on a different track, to a different location in the brain, an impulse may be conveying similar in­formation and may elicit a similar set of responses.

The relationship between what we know about the ascending pathways of pain versus what we do not yet know might be compared to the study of the geography of some newly discovered area. We have the basic maps of the region drawn up in pretty elaborate detail, and we know something about the vari­ous peoples who live in the region, but not so much about how the individuals in each culture function, and very little at all about how the various cultures inter­act. Similarly, the work of tracing the pathways of nociception in animals ap­pears to be making steady progress. We know a lot more than we did 10 years ago about the fundamental similarity in some function of these pathways among the higher vertebrates, and of the identity of the biochemicals used in transmission of pain signals across nerve synapses, but far less about the roles and functions of individual nerves and the inter-relationships among the various CNS components that are involved in nociception. Nor are we any more certain that, having obtained these data, we will be any closer to making a list of the differences between the meaning of the word “pain” to a human, as compared with what animals may sense, feel, and think.

A Few Other Wrinkles—Endogenous Analgesics and Psychological Effects

One of the most important scientific discoveries of the last decade was the recognition that the perception of pain was not a one-way street, running in a simple pathway from nociceptor to cord to CNS centers. In fact, pain perception is a two-way street, because the descending spinal nerve tracts that connect the various CNS centers to levels in the spinal cord can modulate input from the periphery. These nerve pathways work by releasing neurotransmitters comming in from the periphery (L.R. Watkins and D.J. Mayer, Science 216:1185-1192, 1982). E.A. Carstens (University of California, Davis) has hypothesized that this kind of descending analgesia might work to provide a critical edge in the selective survival of an individual by permitting an animal that has been severely hurt to continue to function and to fight, if that is necessary, in spite of severe pain.

Several classes of pain-relieving chemicals have been isolated. These include the endorphins, serotonin, and 5-hydroxytryptamine. Of these, we know most about the endorphins. Chemically, endorphins are peptide molecules that are structurally similar to morphine. Like morphine, they bind to appropriate recep­tor sites in the brain stem and cord to block the transmission of pain impulses. Also, their effect is countered by the same agents that antagonize the action of artificial opiates, for example, the drug naloxone. A close association has been noted between nerve endings that contain the pain impulse neurotransmitter, substance P, and those that contain one type of endorphin, the 5-peptide enkephalin. From these findings, it is tempting to postu­late that the enkephalin receptors, as well as those for other opiates, may be located on the nerve endings that contain substance P, and that these opiates therefore function by blocking the release of substance P (Report of the Panel of En­quiry into Shooting and Angling, RSPCA, U.K., 1980). The sophisticated mecha­nism of pain mediation by naturally oc­curring opiates is not unique to the higher vertebrates: endorphins have been iso­lated from many invertebrates, and are phylogenetically dis­tinct from humans as the earthworm (J. Alu­mets et al., Nature 279:805-806, 1979).

L.R. Watkins and D.J. Mayer (Science 216:1185-1192, 1982) recently studied the pain-moderating role of another kind of endogenous system, a system that does not seem to be activated by endorphin, since its effects are not reversed by the opiate antagonist naloxone. Activity of this second system has been localized to a specific region of the body that is in­volved in auto-injection. In rats, for example, electric shock to the front paw induced endorphin-mediated analgesia, which was reversed by naloxone, but in the hind paw naloxone had no effect on painkill­ing activity. However, the precise phar­macological basis for this type of anal­gesia remains unknown.

In addition, analgesia can be pro­duced by a whole range of other mecha­nisms. Direct electrical stimulation to the brain can activate both opiate- and nonopiate-mediated analgesic pathways. Acupuncture and the analgesia induced by long-duration shock to all four paws of the rat seem, at least in part, effects of hormones, since surgical removal of the pituitary or adrenal glands reduces or abolishes the effect. Interestingly, pain reduction caused by these mechanisms does not seem to be coupled with any sense of euphoria, as is the rule with morphine administration. E.A. Carstens (University of California, Davis) has found that when an animal is allowed to self-administer electrical stimula­tion to induce analgesia, it will only do so when a noxious stimulus is present, implying that the stimulus is not in itself pleasurable. He also suggests, therefore, that this sort of self-stimulation apparatus might provide us with a tool for obtaining clear-cut evidence of when an animal is experiencing pain.

Anxiety and Suffering

Another class of receptors, which selectively bind the anxiety-reducing drugs, the benzodiazepines (Valium is perhaps the best known of these) has been localized within the brains of many animals. The existence of such sites sug­gests that animals may be producing a natural biochemical to counter the af­fect of anxiety, just as the endorphins work to counter pain impulses (Sci News 117:164, 1980).

Binding sites for benzodiazepines have been found in brain tissue of mam­mals, rodents, reptiles, and bony fishes (Brain Res 147:342-346, 1978), but not in car-tilaginous fishes or invertebrates. How­ever, since we do not yet know the whole story relative to the natural benzodiazepine binding, it may well be that invertebrates are also producing biochemicals that are analogous in struc­ture and function to the yet-unidentified anti-anxiety agent secreted by vertebrates.

Goodman and Gilman, in the stan­dard reference work The Pharmacological Basis of Therapeutics (1975) assert that:

The effects of the benzodiazepines in the relief of anxiety can readily be demonstrated in experimental ani­mals. In conflict punishment proce­dures, benzodiazepines greatly re­duce the suppressive effects of punish­ment. However, anxiety in the rat and man can hardly be equated (em­phasis added).

In light of the research demonstrating the close analogy of the physiological roles played by bradykinin, substance P, and the endorphins in a broad spectrum of invertebrates, this last sentence seems a rather premature and cavalier conclu­sion. It seems far more likely that just as the detection of certain neurotransmit­ters furnishes evidence for a similar pat­tern of sensation and response to pain in
area that forms a kind of shell around this nucleus. In rats, terminations of spinothalamic nerves are also found predominantly in the VPL nucleus, but in an area that is located more toward the front of the animal's head.

W.O. (University of Texas Medical Branch, Galveston) reports that the area of the thalamus that is activated seems to be correlated, to some degree, with the nature and intensity of the behavioral response that ensues after the application of a painful stimulus. However, it is not possible at this time to make sweeping generalizations about how different animal species feel in the presence of noxious stimuli, or of how they are likely to react in terms of behavior.

The relationship between what we know about the ascending pathways of pain versus what we do not yet know might be compared to the study of the geography of some newly discovered area. We have the basic maps of the region drawn up in pretty elaborate detail, and we know something about the various peoples who live in the region, but we simply do not know the real significance of many of these differences. Perhaps most important, we have not yet discovered what degree of overlap in function and response may exist among the different anatomical areas of the spinal cord and brain that are used to convey perceptions of pain in the various species. Although traveling on a different tract, to a different location in the brain, an impulse may be conveying similar information and may elicit a similar set of responses.

The connection between what we know about the ascending pathways of pain versus what we do not yet know might be compared to the study of the geography of some newly discovered area. We have the basic maps of the region drawn up in pretty elaborate detail, and we know something about the various peoples who live in the region, but we simply do not know the real significance of many of these differences. Perhaps most important, we have not yet discovered what degree of overlap in function and response may exist among the different anatomical areas of the spinal cord and brain that are used to convey perceptions of pain in the various species. Although traveling on a different tract, to a different location in the brain, an impulse may be conveying similar information and may elicit a similar set of responses.

The work of tracing the structure and function of these pathways among the higher vertebrates, and of the identity of the biochemicals used in transmission of pain signals across nerve synapses, but far less about the roles and functions of individual nerves and the inter-relationships among the various CNS components that are involved in nociception. Nor are we any more certain than, having obtained these data, we will be any closer to making an exact list of the differences between the meaning of the word "pain" to a human, as compared with what animals may sense, feel, and think.

A Few Other Wrinkles—Endogenous Analgesics and Psychological Effects

One of the most important scientific discoveries of the last decade was the recognition that the perception of pain was not a one-way street, running in a simple pathway from nociceptor to cord to CNS centers. In fact, pain perception is a two-way street, because the descending spinal never tracts that connect the various CNS centers to levels in the spinal cord can modulate input from the periphery. These nervous tracts work by releasing neurotransmitters coming in from the periphery (L.R. Watkins and D.J. Mayer, Science 216:1185-1192, 1982).

E.A. Carstens (University of California, Davis) has hypothesized that this kind of endogenous analgesia might work to provide a critical edge in the selective survival of an individual by permitting an animal that has been severely hurt to continue to function and to fight, if that is necessary, in spite of severe pain.

Several classes of peripheral stimulating chemicals have been isolated. These include the endorphins, serotonin, and 5-hydroxytryptamine. Of these, we know most about the endorphins. Chemically, endorphins are peptide molecules that are structurally similar to morphine. Like morphine, they bind to appropriate receptor sites in the brain stem and cord to block the transmission of pain impulses. Also, their effect is countered by the same agents that antagonize the action of artificial opiates, for example, the drug naloxone. A close association has been noted between nerve endings that contain the pain impulse neurotransmitter, substance P, and those that contain one type of endorphin, the 5-peptide enkephalin. From these findings, it is tempting to postulate that the enkephalin receptors, as well as those for other opiates, may be located on the nerve endings that contain substance P, and that these opiates therefore function by blocking the release of substance P (Report of the Panel of Enquiry into Shooting and Angling, RSPCA, U.K., 1980). The sophisticated mechanism of pain mediation by naturally occurring opiates is not unique to the higher vertebrates: endorphins have been isolated and isolated as phylogenetically distinct from humans as the earthworm (J. Alumets et al., Nature 279:805-806, 1979).

L.R. Watkins and D.J. Mayer (Science 216:1185-1192, 1982) recently studied the pain-modulating role of another kind of endogenous system, a system that does not seem to be activated by endorphin, since its effects are not reversed by the opiate antagonist naloxone. Activity of this second system has been localized to a specific region of the body, the thalamus. In rats, electric shock to the front paw induced endorphin-mediated analgesia, which was reversed by naloxone, but in the hind paw, naloxone had no effect on painkill activity. However, the precise pharmacological basis for this type of analgesia remains unknown.

In addition, analgesia can be produced by a whole range of other mechanisms. Direct electrical stimulation to the brain can activate both opiate- and nonopiate-mediated analgesic pathways. Acupuncture and the analgesia induced by long-duration shock to all four paws of the rat seem, at least in part, effects of hormones, since surgical removal of the pituitary or adrenal glands reduces or abolishes the effect.

Interestingly, pain reduction caused by these mechanisms doesn't seem to be coupled with any sense of euphoria, as is the rule with morphine administration. E.A. Carstens (University of California, Davis) has found that when an animal is allowed to self-stimulate, the release of endogenous analgesia, it will only do so when a noxious stimulus is present, implying that the stimulus is not in itself pleasurable. He also suggests, therefore, that this sort of self-stimulation apparatus might provide us with a tool for obtaining clear-cut evidence of when animals are experiencing pain.

Anxiety and Suffering

Another class of receptors, which selectively bind the anxiety-reducing drugs, the benzodiazepines (Valium is perhaps the best known of these) has been localized within the brains of many animals. The existence of such sites suggests that animals may be producing a natural biochemical to counter the affect of anxiety, just as the endorphins work to counter pain impulses (Sci News 117:164, 1980).

Binding sites for benzodiazepines have been found in brain tissue of mammals, rodents, reptiles, and bony fishes (Brain Res 147:342-346, 1978), but not in cartilaginous fishes or invertebrates. However, since we do not yet know the whole story relative to the pharmacology and CNS receptors for benzodiazepine binding, it may well be that invertebrates are also producing biochemicals that are analogous in structure and function to the yet-unidentified anti-anxiety agent secreted by vertebrates.

Goodman and Gilman, in the standard reference work The Pharmacological Basis of Therapeutics (1975) assert that:

The effects of the benzodiazepines in the relief of anxiety can readily be demonstrated in experimental animals. In conflict punishment procedures, benzodiazepines greatly reduce the suppressive effects of punishment. However, anxiety in the rat and man can hardly be equated (emphasis added).

In light of the research demonstrating the close analogy of the physiological roles played by bradykinin, substance P, and the endorphins in a broad spectrum of invertebrates, this last sentence seems rather premature and cavalier conclusion. It seems far more likely that just as with the detection of certain neurotransmitters which furnishes evidence for a similar pattern of sensation and response to pain in...
Corroborating evidence for an anxiety state in animals is provided by new work on “anti-Valliums,” drugs that block the action of benzodiazepines (Science 216:604-605, 1982). One such agent, beta-carboline, induces wakefulness in rats but, unlike amphetamine, does not increase motor activity. Beta-carboline is also being tested in animals to determine whether it has anxiety-producing effects, by observing the animals’ behavior, specifically, their preference between a dark and lighted chamber (under standard conditions, the light tends to frighten them).

Finally, when addressing the problem of pain, the whole issue of the role of the higher CNS centers in mediating pain signals must be considered, especially since there are innumerable anecdotal reports of bizarre responses to traumatic injury, in both animals and humans. Soldiers in the Yom Kippur War, for example, who were interviewed about their initial reactions to severe injuries, described them as painless and only mentioned other simultaneously occurring stimuli, like loud noises.

But What Does It All Mean?

Even if we were to consider only the data presented in this brief overview, it would seem that we have already garnered enough “objective” data to formulate plausible hypotheses concerning the unbroken phylogenetic continuity of mechanisms for perception and response to noxious stimuli among animal species. Varrebretas show homology in terms of nervous structure and function, and most of the biochemicals identified as playing an essential role in pain impulse transmission and modulation have been found in species from primitive to highly advanced.

Further, on the basis of these and similar kinds of findings, several participants at the Symposium on Pain Perception in Animals in New Orleans admitted (in private discussion) that the old subjective-objective dichotomy, as employed by scientists such as Dr. Kitchell, emerges as empty sophistry. J.C. Liebeskind (University of California, Los Angeles) commented, “I see no difference in the appreciation of pain between man and animals. In both cases, we must rely on inferential data. Humans use language, while animals use behavior.”

C.J. Vierck (University of Florida) stressed the fact that a knowledge of the specific pattern of the pain response in a particular individual is as important for animals as it is for humans. He asserted that reactions such as fear and depression, as consequences of pain, were continuous along evolutionary lines. Quibbling about whether or not the sensations and responses of animals to harmful stimuli were sufficiently analogous to human perception to permit us to convey the noble title of “pain” upon them was only a matter of semantic triviality. As another investigator put it, there is no “a priori reason to suppose that, in evolution, the perception of pain appears as a wholly new sensorimotor phenomenon in man” (D. Pratt, Alternatives to Pain in Experiments on Animals, New York, Argus Archives, 1980).

Practical Consequences: The Formulation of Codes and Regulations

F. Wolff (NIH), at the same symposium on pain in New Orleans, noted that, given the gravity of society’s concern about suffering in laboratory animals, “we cannot wait until all the data on acute pain in animals are in”—even if these data could answer all of our scientific and ethical questions about pain—to begin addressing the issue of how best to regulate the allowable extent and intensity of that suffering.

However, efforts aimed at formulating workable guidelines on animal pain have foundered, in nearly every instance, on the problem of defining “pain”; even the most obvious use of words like “suffering” is curarized or paralyzed (category 6). Examples of no difference in the appreciation of pain between man and animals is given for each category. Experiments in categories 1 to 3 require only notification of a regional committee (comprised of scientists, lab technicians, and lay people), whereas those in categories 4 to 6 require the Committee’s formal approval (M. Ross, J. Am. Vet. Med. Assoc. 13:375-378, 1978).

Although superficially divergent, these two approaches are similar in that they both aim at circumventing the problem of attempting to guess about the exact relationship between pain as sensed by animals and what is felt, under similar circumstances, by humans, and the consequential use of vague or abstract language in codes and regulations. In the Swedish code, the correspondence between human and animal pain is simply taken for granted; in the instance of the Pain guidelines, the investigators are advised to use themselves as their first experimental subjects, in order to get a precise fix on the degree of pain that is involved.

In the U.K., the dramatic increase in the use of experimental animals after World War II compelled a re-thinking on questions about their welfare, by scientists as well as the general public. One result of this self-examination was the formulation of the now-famous “three Rs;” in 1959, by Russell and Burch (The Principles of Humane Experimental Technique, London, Methuen): replacement, refinement, and reduction.

However, this approach, although highly useful both as a conceptual model and as a means of countering extreme reactions (both for and against vivisection), had little real effect on the day-to-day practice in laboratories. More recently, public pressure induced the government to establish a departmental committee to investigate the question of pain in lab animals. The Littlewood Committee decided that from “no pain or only minimal and momentary pain” (category 1) to “experiments on unanesthetized animals (or only local anesthesia) where the animal is curarized or paralyzed” (category 6).
humans and animals, so the discovery of benzodiazepine-binding sites in other species provides a possible indication that something akin to the human emotion of anxiety is experienced by most vertebrate animals.

Corroborating evidence for an anxiety state in animals is provided by new work on "anti-Valium," drugs that block the action of benzodiazepines [Science 216:604-605, 1982]. One such agent, beta-carboline, induces wakefulness in rats but, unlike amphetamine, does not increase motor activity. Beta-carboline is also being tested in animals to determine whether it has anxiety-producing effects, by observing the animals' behavior, specifically, their preference between a dark and lighted chamber (under standard conditions, the light tends to frighten them).

Finally, when addressing the problem of pain, the whole issue of the role of the higher CNS centers in mediating pain signals must be considered, especially since there are innumerable anecdotal reports of bizarre responses to traumatic injury, in both animals and humans. Soldiers in the Yom Kippur War, for example, when interviewed about their initial reactions to severe injuries, described them as painless and only mentioned the discomfort such as phonophoresis. I urged the Symposium on Pain in Animals in New Orleans admitted (in private discussion) that the old subjective-objective dichotomy, as employed by scientists such as Dr. Kitchell, emerges as empty sophistry. J.C. Liebeskind (University of California, Los Angeles) commented: "I see no difference in the appreciation of pain between man and animals. In both cases, we must rely on inferential data. Humans use language, while animals use behavior."

C.J. Vierck (University of Florida) stressed the fact that a knowledge of the specific pattern of the pain response in a particular individual is as important for animals as it is for humans. He asserted that reactions such as fear and depression, as consequences of pain, were continuous along evolutionary lines. Quibbling about whether or not the sensations and responses of animals to harmful stimuli were sufficiently analogous to human perception to permit us to convey the noble title of "pain" upon them was only a matter of semantic triviality. As another investigator put it, there is no "a priori reason to suppose that, in evolution, the perception of pain appears as a wholly new sensory phenomenon in man" (D. Pratt, Alternatives to Pain in Experiments on Animals, New York, Argus Archives, 1980).

Practical Consequences: The Formulation of Codes and Regulations

T. Wolfe (NIH), at the same symposium on pain in New Orleans, noted that, given the gravity of society's concern about suffering in laboratory animals, "we cannot wait until all the data on acute pain in animals are in"—even if these data could answer all of our scientific and ethical questions about pain—"to begin addressing the issue of how best to regulate the allowable extent and intensity of that suffering."

However, efforts aimed at formulating workable guidelines on animal pain have founded, in nearly every instance, on the problem of defining "pain"; even the simplest of these guidelines, for example, raised the moral question of whether it is reasonable to use ourselves as our first subjects. Further, on the basis of these and similar kinds of findings, several participants at the Symposium on Pain Perception in Animals in New Orleans admitted (in private discussion) that the old subjective-objective dichotomy, as employed by scientists such as Dr. Kitchell, emerges as empty sophistry. J.C. Liebeskind (University of California, Los Angeles) commented: "I see no difference in the appreciation of pain between man and animals. In both cases, we must rely on inferential data. Humans use language, while animals use behavior."

C.J. Vierck (University of Florida) stressed the fact that a knowledge of the specific pattern of the pain response in a particular individual is as important for animals as it is for humans. He asserted that reactions such as fear and depression, as consequences of pain, were continuous along evolutionary lines. Quibbling about whether or not the sensations and responses of animals to harmful stimuli were sufficiently analogous to human perception to permit us to convey the noble title of "pain" upon them was only a matter of semantic triviality. As another investigator put it, there is no "a priori reason to suppose that, in evolution, the perception of pain appears as a wholly new sensory phenomenon in man" (D. Pratt, Alternatives to Pain in Experiments on Animals, New York, Argus Archives, 1980).

These guidelines emphasize peer review of procedures, careful observations of the animals' behavior as compared with behavior under suspected pain or stress, and measurement of parameters like electroencephalogram, eating and drinking, rank order in society, and body weight. The Committee also advocates the ultimate method for making a good guess about what an animal might be feeling during an experimental procedure: trying the painful stimulus out on yourself before subjecting the animal to the procedures.

A somewhat different approach is represented by the Swedish code of practice on experiments in animals. Here the experimenters are more difficultly attempt to provide workable guidelines for scientists by dividing procedures into six categories, according to the degree of pain that is likely to result. The categories range from "no pain or only minimal and momentary pain" (category 1) to "experiments on unanesthetized animals (or only local anesthesia) where the animal is curarized or paralyzed" (category 6). Examples of pain are listed in category 4 to 6 to likely produce each degree of pain are given for each category. Experiments in categories 1 to 3 require only notification of a regional committee (comprised of scientists, lab technicians, and lay people), while those in categories 4 to 6 require the Committee's formal approval (M. Ross, Austr Psych 13:375-378, 1978).

Although superficially divergent, these two approaches are similar in that they both aim at circumventing the problem of attempting to guess about the exact relationship between pain as sensed by animals and what is felt, under similar circumstances, by humans, and the consequential use of vague or abstract language in codes and regulations. In the Swedish code, the correspondence between human and animal pain is simply taken for granted: in the instance of the Pain guidelines, the investigators are advised to use themselves as their first experimental subjects, in order to get a precise fix on the degree of pain that is involved.

In the U.K., the dramatic increase in the use of experimental animals after World War II compelled a re-thinking on questions about their welfare, by scientists as well as the general public. One result of this self-examination was the formulation of the now-famous "three Rs;" in 1959, by Russell and Burch (The Principles of Humane Experimental Technique, London, Methuen): replacement, refinement, and reduction.

However, this approach, although highly useful both as a conceptual model and as a means of countering extreme creativitism (both for and against vivisection), had little real effect on the day-to-day practice in laboratories. However, the ever-increasing pressure further induced the government to establish a departmental committee to investigate the question of pain in lab animals. The Littlewood Committee decided that
the most workable way of defining pain was to consider it as three separate mental states, with three correspondingly different sets of symptoms (quoted from J. H. Seamer, Vet Rec 110: 341-344, 1982):

1. Discomfort — such as may be characterized by negative signs such as poor condition, torpor, and diminished appetite.
2. Stress — a condition of tension or anxiety predictable or readily explicable from environmental causes, whether direct from or including physical causes.
3. Pain — recognizable by more positive signs such as struggling, screaming or squealing, convulsions, severe palpitation.

Although this “Littlewood formula” has not been formally incorporated into law, many of its components have been put into use, via administrative mechanisms, by the Home Office.

Conclusion

In one sense, the issue of pain in animals can be considered as an isolated element of the more general question of animal consciousness, a topic that is currently undergoing a relatively radical revision. J. Levy, a University of Chicago neurophysiologist, has decided on the basis of neurological studies that demonstrate the continuity between the components that make up animal and human brains — that “we have no reason to suppose that there are any unique properties of the human organ of thought.” He also reiterates the common insight that much of our medical research on animals assumes a continuity of consciousness from one species to another (Psych Today 16:36-44, 1982).

Surely, then, it would seem that we can say with some degree of certainty that the evidence furnished, so far, to date, by the traditional measures of the classical scientific approach has only served to date, by the traditional measures of the classical scientific approach has only served to substantiate the theory that animals not only feel an immediate reaction to pain that is similar to our own, but also endure many of the longer-term ramifications of pain. Their “feelings” are communicated by their reactions, which constitute reasonably reliable, objective indicators of some type of adverse state. It matters little whether we choose to denominate this adverse state as “pain,” or decide to call it something else and reserve the word “pain” for usages that contain more subjective elements and are thus only describable in language, thereby limiting its use to the human realm of experience.

Extrapolating further from this conclusion, we can say that “pain,” as a response, should perhaps be considered on a species-by-species basis. For example, vocalization as a reaction to novel stimuli is probably of importance only to relatively socialized species, either to warn others in the group or to get assistance from them. In addition to the adoption of some approach that integrates the best features of the Littlewood formula, the Swedish code, and the Pain guidelines, it might be a good idea in setting up policy on animal experimentation to admit that there are some very real differences among species, in terms of their internal (neural and biochemical) and external (behavioral) indicators of pain. What we may need, then, is a multiplicity of handbooks on animal pain, for each of the several species that are commonly used in laboratories, that would set forth general guidelines on care, along with the specific signs of pain that ought to be carefully monitored for that species and what is known about the idiosyncrasies of administering anesthesia to the animal.

As Peter Medawar has stated (in Hope of Progress, Methuen, 1967, p. 72): “I think that the use of experimental animals on the present scale is a temporary episode in biological and medical history... In the meantime, we must grapple with the paradox that nothing but research on animals will provide us with knowledge that will make it possible for us, one day, to dispense with the use of them altogether.”

Until that day arrives, it is imperative that we formulate workable guidelines for using animals with more compassion — and intelligence — than we are at present.

Dana H. Murphy

INT J STUD ANIM PROB 3(4) 1982

Comments

The Future of Research into Relationships Between People and Their Animal Companions

Boris M. Levinson, Ph.D.

In sharp contrast to prevalent public attitudes of 20 years ago, the field of animal-human relationships is now respected as a legitimate area of scientific investigation. However, it has not yet evolved into a full-fledged discipline: a specific term for this discipline, a body of theory, and a methodology of its own must still be developed. This methodology should make use of both the intuitive and scientific approaches in order to encompass the full richness of animal-human interaction. Four main areas of investigation would be fruitful at this point: (1) the role of animals in various human cultures and ethnic groups over the centuries; (2) the effect of association with animals on human personality development; (3) human-animal communication; and (4) the therapeutic use of animals in formal psychotherapy, institutional settings, and residential arrangements for handicapped and aged populations.

An ambivalent relationship has existed between humans and animals since ancient days, and we may now be ready to translate into reality the myth of the Golden Age when animals and humans lived at peace with each other.

It was only 20 years ago, at a meeting of the American Psychological Association, that I first presented a paper on the “Dog as a Co-therapist” (Levinson, 1961). The reception was lukewarm. While some accepted the ideas, others met them with ridicule, even inquiring as to whether the dog shared my fees. I became known as the dog’s co-therapist.

Obviously, much water has flowed under the bridge since then. The problems raised in my original paper and in subsequent articles have come to be taken seriously by society at large. Even the academic world has granted recognition to our field by awarding doctorsates in the discipline of animal-human relationships. However, in spite of these promising beginnings and accomplishments, it seems to me that this field has not become a true discipline as yet.

Perhaps there are advantages to this rather ambiguous status, since our attempts to define our field help us to remain spontaneous and flexible in both methodology and subject matter. How, for example, do we account in our research for such factors as the intimate,

Boris M. Levinson is Professor Emeritus of Psychology at Yeshiva University. He resides at 96-35 Queens Blvd. 7K, Elmhurst, NY 11373. This article was presented as an invited address at the First International Conference on the Human/Companion Animal Bond at the University of Pennsylvania, Philadelphia, PA on October 6, 1981, in response to receipt of the Delta Society Achievement Award for Contributions to the Study of the Human/Companion Animal Bond. He is also Director of Human/Companion Animal Therapy at Blueberry Treatment Centers, Inc., Brooklyn, NY.

INT J STUD ANIM PROB 3(4) 1982