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Vocalizations carry emotional, physiological and individual information.

This suggests that they may serve as potentially useful indicators for infer-

ring animal welfare. At the same time, automated methods for analysing

and classifying sound have developed rapidly, particularly in the fields of

ecology, conservation and sound scene classification. These methods are

already used to automatically classify animal vocalizations, for example,

in identifying animal species and estimating numbers of individuals.

Despite this potential, they have not yet found widespread application in

animal welfare monitoring. In this review, we first discuss current trends

in sound analysis for ecology, conservation and sound classification. Follow-

ing this, we detail the vocalizations produced by three of the most important

farm livestock species: chickens (Gallus gallus domesticus), pigs (Sus scrofa
domesticus) and cattle (Bos taurus). Finally, we describe how these methods

can be applied to monitor animal welfare with new potential for developing

automated methods for large-scale farming.

1. Introduction
Bioacoustics is the study of the production, transmission and reception of animal

sounds. This includes not only the vocalizations of animals such as birds and

mammals [1–3], but also the sounds that can be produced by insects [4,5]. In

ecology, the automated analysis of animal sounds can be used for individual

animal detection [6], species detection [7,8], location of animal detection

[9–11] and population monitoring [6,12–14]. In conservation, it is useful

when verifying if human activities such as shipping or seismic survey vessels

affect wild animal behaviour [15–19]. Vocalizations of some species such as

goats (Capra hircus) and horses (Equus caballus) also differ during positive and

negative experiences [20–23].

Methods in bioacoustics are becoming increasingly automated, with

researchers deploying autonomous recorders that are capable of automatically

collecting data [24–26]. The automated analysis of sound has also been applied

to tasks such as speech recognition [27]. This is easily the most well-known

application of audio analysis, and it is found on every smartphone today

[28,29]. Outside of speech recognition, computer scientists have focused their

attention on the classification of ‘sound scenes’ (the type of environment an

audio recording was collected in, such as a street or the inside of a bus), and

of ‘sound events’ (for example, identifying if a car has passed by) [30].

Most animal welfare research to date has focused on reducing negative

experiences for animals. This involves improving environmental factors such

as housing [31–33], lighting [34], stocking density [35–37], reducing aggression

[38–40], and injury and disease prevention [41]. Assessing animal welfare can

be difficult, but is usually achieved using some type of scoring method indica-

tive of negative experiences [41–43] or through physiological assessment of the
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animal to identify conditions such as hock burn in poultry

[44]. While these factors are important for monitoring the

physiological welfare of the animals, it is now accepted that

good animal welfare should not only involve protection

from negative experiences, but also the inclusion of positive

ones [45–48]. More recently, technologically advanced

methods such thermal imaging use infrared cameras to

measure variation in blood flow and body temperature,

allowing it to be used as a non-invasive method for monitor-

ing heat loss, and thus discomfort and risk of illness [49].

Animal welfare assessment and monitoring could benefit

from increased use of automated methods [50,51]. One area in

particular that shows promise is the use of automated analysis

of the vocalizations that animals produce for monitoring their

health and welfare. While ecology and conservation appear to

be rapidly adopting advanced sound/audio methods for

monitoring animal populations [7,52,53], the use of these

methods in animal welfare has been somewhat slow and lim-

ited. This is despite previous research discussing the benefits

of bioacoustics monitoring for animal welfare [54], and the

research projects investigating common livestock vocaliza-

tions that have highlighted the potential of their methods

for application in animal welfare monitoring [55,56]. The

main goal of this review is to show recent advanced compu-

tational audio analysis methods that are already being used

in ecology, conservation and animal cognition research in

order to discuss how they may be applied as a potential

method for monitoring negative and positive animal welfare

in agricultural settings. Applications in speech processing,

sound scene analysis and classification are also discussed,

because these are implementing the most technically

advanced methods in the field overall.

Herein, we first outline the methodology on how to extract

meaningful information from these recordings through the

process known as acoustic feature extraction. We also introduce

methods being deployed in ecology and conservation that

implement the most technically advanced algorithms for

analysing animal sounds. We conclude with a discussion of

the function of vocalizations in some of the most common

farmed livestock (chickens, Gallus gallus domesticus; pigs, Sus
scrofa domesticus; and cattle, Bos taurus), and the potential appli-

cation of the new methods that could be implemented for

automated monitoring of animal welfare. Chickens and pigs

are highly vocal species [57–60] that are likely to be particu-

larly suitable for these methods. Finally, we close the review

discussing the most pressing challenges facing bioacoustics in

welfare and the future direction of the field.

2. Literature collection methodology
The literature was collected using the Web of Science and

Google Scholar search engines. While the field of automated

bioacoustics monitoring is in its infancy regarding animal

welfare, bioacoustics in ecology and electronic engineering

are advancing rapidly, resulting in a large body of literature.

In order to narrow down the literature search, and reflect the

cutting edge of the field, we restricted our search to papers

published in the past 5 years, ranging from January 2013 to

June 2018. The following keywords were used: bioacoustics;

ecoacoustics; animal names in English and Latin (chickens,

Gallus gallus domesticus; pigs, Sus scrofa domesticus; and

cattle, Bos taurus); sound scene classification; sound event

detection and classification. Searches were both individual

and Boolean. For the farm livestock discussion, we restricted

our searches to some of the most common livestock (chickens,

pigs and cattle), because they are also highly vocal [50,61–63]

and farmed in large numbers on an industrial scale. The

chosen published studies on livestock species are used to

illustrate key aspects of their vocalizations relevant to this

review. The authors identified the literature that deployed

techniques that could be adapted for animal welfare such

as call identification, density estimation, species identification

and physiological information detection. The authors omitted

any papers on fish, insect and amphibian bioacoustics.

Methods involving multimodal data are not covered in this

literature review in order to focus on audio methods. The

total number of papers in this review is 149, with 66 that

were published before 2013. Pre-2013 papers are either

studies that illustrate a particular aspect of bioacoustics well

or were included because information on the topic in the

past 5 years has been scant.

3. Audio feature extraction
After completing data collection, the first step in analysing

audio recordings is to extract meaningful information from

the signal. This process is commonly termed audio feature

extraction [64]. There are several methods for extracting

audio features from a signal, and the process of identifying

what type of features should be used can be viewed as a

research task in itself [65,66]. While these methods can be car-

ried out in the time domain, the majority of algorithms focus

on the time–frequency domain. In order to transform a signal

from the time domain (the raw audio samples stored in an

array, or some other type of format) to the time–frequency

domain, it is necessary to carry out what is known a discrete

Fourier transform (DFT) [67]. In the simplest form, a Fourier

transform breaks down a signal into a number of different

sinusoidal functions, each with their own frequency, phase

and amplitude values. When a signal is converted to the fre-

quency domain, using an implementation of the DFT called

the fast Fourier transform (FFT), it is possible to extract a

number of acoustic features, the most common of which are

mel frequency cepstrum coefficients (MFCC), which gained

considerable attention because of their success in human

speech recognition algorithms [68]. This trend has been

noted in reviews of the Detection and Classification of

Audio Scenes and Events (DCASE) competition, where mel-

based feature extraction methods were the most popular in

classification and detection tasks [30]. The report on the

DCASE challenge also noted recent trends in environment

classification have implemented a variety of deep learning

methods. A simple definition of deep learning refers to super-

vised and unsupervised machine learning algorithms that

carry out a variety of tasks (such as classification, data gener-

ation, translation and prediction) using very large datasets

(big data) and large neural networks [69]. A useful compari-

son of deep learning methods for environmental sound

detection is given in [70]. In audio applications, the mel

spectrogram has been used as the most common input for

deep learning networks, although researchers are investigating

the potential of raw audio samples as input [71,72]. Linear pre-

diction coding, a model that is inspired by the source-filter

theory of speech [73], analyses sounds in order to create

filter banks that can recreate those found in the original

sound. The fundamental frequency of a signal is the lowest
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voiced harmonic in that signal [73]. There are many other

acoustic features that have been applied to the analysis of

music recordings. These features include spectral flux, which

measures the change in magnitude of all frequency bins, and

has been used as an onset detection function (for example,

detecting the start of a piano note) [74]. The spectral centroid

has been used as a feature for describing the ‘brightness’ of

a sound, making it useful when characterizing timbre [75].

Spectral flatness is a common method in speech analysis for

detecting how noisy a signal is. Zero crossing rate examines

how often an audio signal crosses the zero axis and is useful

in detecting voices in noisy environments. While an exhaustive

description of every acoustic feature and parameter is beyond

the scope of this review, we have summarized the advantages

and disadvantages of some of the most common audio

features and parameters in table 1.

In supervised machine learning tasks, audio features are

usually combined with other data such as the name of the

species, and the location in which it was recorded [76]. In

machine learning, these labels are often called ‘classes’ and

the combined classes are referred to as the ‘taxonomy’. Label-

ling data can be a challenging task [77] because it requires

expert knowledge of the data, is time consuming and can

be subject to human error. Some researchers use citizen

scientist programmes to assist in annotating recordings [7].

These annotations are highly important, as they are required

for supervised machine learning tasks. A major setback in

applying the methods discussed in this review is the lack of

well-labelled open source databases for common farm animals.

This is non-trivial, because recording animal vocalizations is a

challenging task in itself. Finally, the creation of a database

requires a human to accurately label each individual vocaliza-

tion. This means that the database will be subject to some

degree of human error. After extracting a feature, it is possible

that variation in the duration of a signal could affect analysis.

One method for adjusting the length of a signal is dynamic

time warping. An excellent example of its application was its

use in comparing individual units of vocalizations in birds

[78]. It was also used to identify the similarities between

speech recordings where an individual speaks at different

speeds [79].

4. Automated acoustic monitoring in ecology
and conservation

Bioacoustic monitoring in ecology and conservation is an

extremely challenging task, and the relationship between an

ecosystem and audio recorded from it is still not fully under-

stood [80,81]. Here we outline methods that have been

developed over the past 5 years to investigate a variety of

topics in ecology and conservation. Bioacoustic analysis has

proven especially useful in environments that are naturally

hostile to humans and where visibility is low, such as

marine [15,82,83] and tropical [52,84–86] ecosystems. Acous-

tic monitoring can also be useful in detecting nocturnal

animals such as bats [7,12]. This concept of hostile environ-

ment can be extended to include animal production

facilities, which have been shown to be associated with

increased risk of respiratory diseases in humans [87].

Table 1. Common audio feature extraction algorithms. Each row corresponds to a different algorithm, with the first column giving the name of the feature, the
second column some of the advantages associated with the method and the third column giving some disadvantages.

feature name advantages disadvantages

mel frequency

cepstrum

coefficients

available in most software packages. Successfully implemented in

many speech and birdsong studies. Popularity of the algorithm

means it is well optimized and fast

susceptible to interference from background noise

linear predictive

coding

method that represents the spectral envelope of a signal and is

based on the source-filter model, making it relevant to many

animal vocalization studies

does not perform well with sounds outside of the

formant range

mel spectrogram commonly used for deep learning algorithms. It is a spectrogram

that has been mapped to the mel scale

while suitable for many deep learning algorithms,

it is not practical for many classic machine

learning algorithms

fundamental

frequency

the lowest partial in a signal after carrying out Fourier analysis.

Associated with the concept of ‘pitch’. Used in several animal

studies. Easier to conceptualize than some other features

high computational cost

spectral centroid associated with the ’brightness’ of a sound. Used in music

research as a method for timbre analysis

typically combined with other audio features. Not

often the only parameter measure in a signal

spectral flux associated with timbre. Has been useful for identifying percussive

sounds in music

typically combined with other audio features. Not

often the only parameter measure in a signal

spectral flatness useful for detecting how noise like or tone like a signal is typically combined with other audio features. Not

often the only parameter measure in a signal

zero crossing rate analyses how frequently a signal crosses the zero axis. Has been

used to detect voices in noisy environments and also been use

for detecting percussive like sounds in music

typically combined with other audio features. Not

often the only parameter measure in a signal
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Automated acoustic monitoring will help reduce the amount

of time that humans have to spend in potentially dangerous

environments, and aid farmers in monitoring animal health

and welfare. It also allows for the monitoring of animals at

night when workers may not be available, and visibility is

low. The interdisciplinary and highly technical nature of the

field requires researchers to be familiar with digital signal

processing, mathematics, machine learning and ecology.

This can make it difficult for people with backgrounds in

animal behaviour and welfare, as well as veterinary science

to navigate the literature discussed in this review. In order

to address this issue, we designed a decision tree shown in

figure 1 to aid researchers in selecting papers to begin their

own investigations into the field.

Torti et al. [88] implemented a method known as the Acous-

tic Complexity Index to estimate the number of lemurs (Indri
indri) taking part in a choral display in a tropical environment.

They found that relatively simple spectrographic analysis was

sufficient when identifying up to three singers, but for larger

numbers of animals the Acoustic Complexity Index [89] per-

formed well, positively correlating with the number of

animals in the environment. Other investigations have found

that the use of acoustic indices (mathematical descriptions of

sounds similar to audio features) can be used to accurately

detect the number of biological sounds in terrestrial recordings,

but they performed poorly in marine recordings [90]. It was

noted in the same research that the performance of acoustic

indices was negatively affected by noise from insects, weather

and anthropogenic sounds.

There has been recent evidence to suggest that acoustic

monitoring can be used to infer individuality, behaviour

and morphology information about animals. In a study of

African penguins (Spheniscus demersus), discriminant

function analysis (DFA) applied to acoustic parameters

extracted from recordings of the calls allowed 12 individuals

to be identified 62–78% of the time [91–93]. When

implementing leave-one-out cross validation, the accuracy

of the DFA was 66%. DFA has also been applied to the

study of three different crane species, investigating how

fledglings can increase their nonlinear calls as they grow

older so as to avoid habituation of parents to their vocaliza-

tions [94]. It achieved an accuracy of 73% for animals aged

3–45 days old, and 79% accuracy for animals aged 83–183

days old. However, it should be noted that that DFA does

not account for spectral or temporal features that may also

be important in determining individuality. In fallow deer

(Dama dama), lower frequency groans correlate with larger

animal size, and indirectly with the individual’s social

status [3]. In goats (Capra hircus), feed-forward artificial

neural networks have been used to classify calls according

to individual identity, group membership and maturation

[95]. Contact calls (n ¼ 321) from 11 individuals were

collected, and 27 acoustic features extracted from each call.

Each input node corresponded with a different acoustic

feature. The study achieved 71% accuracy for vocal

individuality, 29% for social group and 91% for age.

A challenge that is faced by many of these methods is that

they often require labelled datasets. For example, a researcher

may have to manually annotate what sounds occur in a

recording in order to implement supervised learning

methods. One method of addressing the issue of unlabelled

data is to apply unsupervised analysis methods in order to

infer information such as diversity from recordings. Ulloa

et al. [96] developed a method called multiresolution analysis

of acoustic diversity to detect regions of interest in audio

data by first identifying areas of interest in recordings

using the short-time Fourier transform. These regions

were characterized by extracting the median frequency

and two-dimensional wavelet analysis. This was then auto-

matically annotated using a clustering technique. Another

approach to handling poorly labelled datasets is to auto-

matically annotate and label them by breaking down

audio transcription into multiple intermediate tasks, such

as when they occur and to which class they belong [97].

Morfi & Stowell [97] achieved this by training two types

of neural networks (stacked convolutional neural network

and a recurrent neural network) and using three different

training methods: separate training (identifying when an

event occurs and what class it belongs to trained separ-

ately); joint training (share a convolutional part and the

network outputs when an event occurs and to what class

it belongs); and tied weights training. Tied weights training

aims to combine the benefits of separate and joint training

by having a shared convolutional part, but unlike joint

training, different types of input can be used to train each

task. Their results showed that tied weights training outper-

formed joint weights training, but that separate training still

outperformed both tasks.

In marine mammal science, the most common method of

determining the location of an animal is known as passive

acoustic sonar. Passive acoustic sonar implements an array

of evenly spaced microphones that records the sound of an

individual, and then calculates the difference in the time of

arrival of this vocalization between all microphones in

order to triangulate the location [82,98–102]. The combi-

nation of detecting species and animal location is often

referred to as passive acoustic monitoring [52,53,98].

5. Detecting emotion
The term emotion is a challenging one in animal behaviour

science due to the several different descriptive and prescrip-

tive definitions found in the literature [103]. Some

researchers describe emotions using the valence and arousal

model [104], a dimensional model that conceptualizes

emotions regarding positivity and negativity (valence) and

states of contentment and elation (arousal). This model can

be assessed using judgement bias tests [105]. Other research-

ers may refer to more specific systems, such as the anxiety–

depression continuum [106]. In this review, we specify

what system was used in each study.

Briefer et al. [20] investigated the relationship between

emotional state and vocalizations in goats (Capra hircus)

by recording the physiology (e.g. heart rate variability) of

the animals using a bio-harness, along with sound record-

ings of the animals. Recordings were made when the

animal was placed in four situations to evoke different

states of arousal and valence (control, negative food frustra-

tion, negative isolation and positive food anticipation)

[20,104]. Vocalizations produced during these different

emotional states showed that goats uttered calls with a

lower fundamental frequency with a low level of frequency

modulation when placed in positive situations compared to

negative ones. This study highlights how we can infer the

emotional state of the animals from their vocalizations,

and thus if they are having positive experiences during
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their lives, but the methods used to identify this have not

been automated. This could be achieved through some of

the classification methods discussed in the ecology section

above. For example, it would be possible to apply call

identification algorithms such as those used in [107] to

identify distress vocalizations in chickens, pigs and cattle.

Outside of ecology, several investigations have been carried

out into determining the emotional state in recordings of

human speech [108–110], where the four basic human

emotions (happiness, anger, fear and neutrality) were

classified by analysing changes in vowel regions of

speech, focusing on the features of fundamental frequency

and the first three formants of the signal. These features

were then classified using a support vector machine, achiev-

ing the best results at classifying happiness, but the poorest

results when classifying fear. Another approach focused on

selecting features for the classification of emotions by using

a small database of speech signals with emotional labels,

and a high number of acoustic features [110]. These were

then combined with decision tree classification and

random forests in order to classify the speech sounds.

These methods could also be used in order to identify

animal vocalizations associated with welfare, but would

require a well-labelled dataset of sounds associated with

positive and negative welfare in order to be implemented.

6. Anthropogenic noise
The effect of anthropogenic noise on animals [15,111–114] is

a key topic in bioacoustics research. Noise is usually the result

of the sound of vehicles and has been shown to have a nega-

tive effect on animal foraging [113]. Researchers have noted

that noise can also interfere with data collection itself, such

as where background noise can interfere with acoustic

trying to
detect

disease?

is it a
mammal?

no yes

no yes

trying to detect
location?

no yes

trying to detect
physiological
information?

yes

trying to detect
number of
animals?

no yes

trying to detect
species?

yes

hidden Markov
model [25];
decision tree

[26]

support vector
machine [123];
decision tree 

[124]

example
based

classifier [143]

difference in time of
arrival [135]

feed forward artificial neural network
[95]; linear model [56]

difference in time of
arrival [14]

no

Figure 1. A decision tree to help researchers identify bioacoustics studies relevant to animal disease status, location detection, physiological information, number of
animals and species detection.
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methods to determine the number of animals taking part in a

choral display [88,90] or in the application of acoustic indices

to monitoring biodiversity [90]. This is one of the major chal-

lenges bioacoustics faces in terms of its application to animal

welfare. Animal housing often relies on ventilation systems

for maintaining air quality [115], which produce noise and

interfere with data collection. Bioacoustic researchers should

look towards the fields of speech and music analysis that

are developing methods to separate different sound sources

in audio recordings [116]. Noise on farms has also been high-

lighted as being a major concern for the welfare of farm

workers [117], and acoustic monitoring provides a method

that could allow for it to be monitored and thus controlled.

In marine mammals, it has been suggested that noise from

shipping has elicited a change in the vocalizations of hump-

back whales [17], requiring them to switch from primarily

vocal acoustic displays to surface active displays such as

breaching. For this reason, it is important for welfare research-

ers to be aware of other sounds in animal production

environments, as they may influence vocalizations they are

trying to monitor.

7. Discussion of livestock vocalizations
In order to link the discussion back to animal welfare, it is

necessary to provide some information on the bioacoustics

of some of the major farm livestock species, including their

call functions, what information their vocalizations may

carry and what previous studies have revealed.

7.1. Chickens
The repertoire of chickens was first described by Collias &

Joos [58], who identified different vocalizations specific to

the age and sex of the animal. For chicks, they identified plea-

sure chirps, distress chirps and fear trills. Pleasure chirps

consist of short ascending vocalizations, distress chirps of

short descending sounds and fear trills consist of rapidly

modulating vocalizations. In adults, they identified parental

calls, so named because they are used to attract chicks.

These included clucking (repeated vocalizations with a low-

frequency content) of a broody hen to help stimulate the

chicks to follow her, and also calls to let the chicks know

there is food nearby. They also identified a roosting call,

where a broody hen is settled for the night, and does not

have her chicks underneath her, she will emit a long, low pur-

ring sound. This sound is stimulated by distress calls from

chicks and the onset of darkness. Broody hens also produce

alert calls for their chicks, whenever a person approached

them, and this affected the behaviour of the chicks who

would cease their activities and remain still. Finally, broody

hens produce fear squawks whenever they were held by a

labourer or researcher. Adult males produced two different

types of warning call that distinguish between predators

located on the ground, and predators located in the air. The

repertoire of red jungle fowl (the ancestor of domestic chick-

ens) was also analysed, and the general vocalizations and

behaviour of poultry and jungle fowl were noted to be the

same [118]. As the animals grow, their vocalizations change

and it is possible to predict this change over time [56].

Research has elicited both ground and aerial

chicken alarm calls using visual stimuli presented using a

video-monitor [119]. Research has also identified other

behaviours associated with different types of alarm calls.

For example, after hearing aerial alarm calls, hens are more

likely to run towards areas with cover. Both alarm call

types increased rates of horizontal scanning, but hens are

more likely to look upwards following aerial alarm calls.

This shows that chicken alarm calls are functionally referen-

tial. This was also investigated in food calls [120]. Male

chickens are more likely to elicit food calls whenever a

female is present [121], meaning that these food calls are

dependent on food and social context. Two playback exper-

iments were carried out to determine their function. In the

first, isolated hens were played back food calls and their be-

havioural responses were compared to when they were

played back ground alarm calls and contact calls. Food calls

resulted in the hens fixating their view downwards. This

type of behaviour was not observed with other calls and

suggests that food calls provide the hens with information

about the presence of food.

Domestic fowl vary their vocalizations when they are

anticipating different types of rewards [62]. Calls in the

McGrath et al. [60] study were first manually classified, and

then subjected to classification and regression tree (CART)

and random forest analysis. The CART and random forest

analysis were used to identify the call repertoire in antici-

pation of rewards and during frustrative non-reward. The

results revealed that chickens produce different call types in

anticipation to different types of rewards. The acoustic analy-

sis revealed that the peak frequency in these calls varied

depending on the reward. This work is also an excellent

example of how methods from ecology are already influen-

cing animal welfare research, as this decision tree method

was originally used as a labelling convention to identify the

repertoire of social sounds in humpback whales [122].

Sufka et al. [106] investigated the relationship between

chicken distress vocalizations and the anxiety–depression

continuum over time. This research was carried out in

order to verify a chicken model of depression–anxiety for

use in clinical drug trials as an alternative to rodent

models, but nevertheless provides insights into the relation-

ship between vocalizations and emotions in chicks. Socially

raised chicks were separated from conspecifics and during

this initial stage displayed distress vocalizations. The rate of

production of these vocalizations was most intense at the

onset of separation, and then began to decline. Three tem-

porally sequential phases were suggested from these results

(anxiety-like stage, transitional phase and finally a depressive

stage). Socially separated animals displayed higher rates of

production of stress vocalizations, and higher levels of hor-

mones (corticosterone) associated with stress that peaked

during the anxiety stage.

There have also been spectral approaches to the analysis

of chicken vocalizations associated with respiratory disease

[123]. Sick chickens produce a vocalization known as a rale,

a type of sound only produced when they are infected

with respiratory diseases. They detected rales using sparse

spectrogram decomposition, a method in which audio

recordings of the animals are first divided into one-minute

segments. A spectrogram is generated from these segments,

and any frequency content not associated with the respi-

ratory system of the animals is discarded. This is then used

to generate a sparse coefficient matrix, which is essentially

a matrix based on the spectrogram but with very few

elements within it. This coefficient matrix is then summed
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in order to create a feature vector. This is carried out for each

segment of audio in order to create a dictionary of these vec-

tors. These dictionaries corresponded to recordings made of a

healthy flock, and a flock that was infected with respiratory

disease. Labels and vectors were used to train a support

vector machine, which learned to distinguish between the

healthy and unhealthy flocks. Another algorithm detected

rales by labelling audio recordings of spectrograms from

8 min of audio recordings collected over 25 days of

continuous recordings [124]. They then extracted MFCC vec-

tors, clustered them in order to examine their distribution

over a window of time, and classified the features using a

decision tree. Another group of birds were infected, and the

researchers were able to use their algorithms to track the

course of the disease using the trained decision tree. These

studies are focused on animal health and welfare, but their

methods are more inspired by research in electronic engineer-

ing, than conservation, ecology and behavioural studies.

However, it may be possible to implement these methods

to examine other issues related to animal welfare, such as

detecting pain calls in pigs [60,125].

Chickens are highly vocal and thus they are particularly

suitable for automated bioacoustics monitoring methods.

Some techniques already used in ecology, such as call classifi-

cation, have great potential for welfare monitoring. Intensive

chicken production also usually relies on an automated light-

ing system [126], and cameras used for monitoring welfare

operate poorly in low lighting conditions. Acoustic monitoring

can bypass this issue and be used regardless of low light con-

ditions. Similarly, the distress vocalizations discussed by

Sufka [106] have the potential to be detected automatically

using methods such as convolutional neural networks [127].

7.2. Pigs
The calls of domestic pigs can be divided into three different

categories: high-frequency distress calls (squeals and

screams) [23], shorter low-frequency vocalizations known as

grunts [128,129] and higher intensity short vocalizations

known as barks [130]. Screams differ from squeals in that

they have a significantly lower peak and main frequency

[125]. During social isolation, there is a direct relationship

between production rate of low-frequency vocalizations

(below 500 Hz) and environment, with pigs kept in barren

housing producing fewer vocalizations than those kept in

enriched environments [63]. In addition, some call par-

ameters (formant frequencies) in pig grunts can also be

used to indicate body size and thus growth rates, another

important indicator of good welfare [131].

An experiment was carried out involving two manipula-

tions to determine if there were differences in the calls of

thriving (heaviest in the litter) and non-thriving (lightest in

the litter) piglets during separation from their mother, and if

these differences in calls could indicate if the animal was in

need of food [132]. This test did not distinguish between the

different call types of pigs, such as grunts and squeals. They

found that the non-thriving animals use more high-frequency,

long duration calls, and that calls increased more in frequency

than the thriving and well-fed animals. The same study also

investigated the response of mothers to the playback of

piglet isolation and white noise. It found that the mothers

were more likely to return a response vocalization and

approach the loudspeaker when they heard recordings

collected from piglets kept in isolation. This suggests that

the calls of piglets contain information about their needs

[132]. Care needs to be taken when using pig vocalizations

as an indicator of need, as previous research has shown that

not all signals are honest, and care must be taken when ana-

lysing their sounds for welfare assessment [133].

Piglet vocalizations have been analysed in order to estimate

the level of pain they are experiencing [125]. Grunts, squeals

and screams were analysed when piglets were being castrated

with and without local anaesthesia. It was found that piglets

castrated without local anaesthesia produced twice the

number of screams as piglets castrated with anaesthesia. This

suggests that pig vocalizations also carry information about

pain, further highlighting automated vocal analysis as an

appropriate tool for assessing their welfare. Painful situations,

such as tail biting [50], could be detected using automated

acoustic monitoring. Pig screams have been detected by

using a combination of linear predictive coding combined

with artificial neural network in order to detect screams in pro-

duction environments [134]. Another algorithm was also

developed to detect the location of cough sounds in a pig

house by calculating the difference in time of arrival between

an array of microphones [135]. This allows for the early detec-

tion of respiratory diseases in pigs before it can spread to

healthy animals. However, this algorithm could be adapted

to work with screams or squeals, allowing the farmer to

localize where in the housing the incident is occurring.

Emotional arousal was investigated in piglets for two

specific distress calls and contact calls across three levels of

arousal in negative situations [23]. Central frequency was a

good indicator of arousal in call types and harmonicity

increased for screams but decreased in grunts as arousal

increased. Linhart et al. [23] also found that the intensity of

amplitude also increased in screams, but not in grunts.

Research on the vocalizations of wild boar has shown that

their calls can be categorized into grunts (pulsatile, low-fre-

quency sounds), squeals (noisy, harsh vocalizations in a

broad frequency range), grunt–squeals (observations where

both vocalizations were observed in a single vocalization),

barks (isolated, short, high-intensity, non-harmonic vocaliza-

tions) and trumpets (harmonic calls with a high fundamental

frequency) [136]. The recordings were analysed by extracting

acoustic parameters and putting them through multinomial

logistic regression models, and a hierarchical cluster analysis.

The analysis confirmed that vocalizations of wild boars could

be broadly categorized into four classes listed above. Wild

boar calls also contain information on emotional valence

[137]. Animals were given three different treatments (anticipat-

ing a food award, affiliative interactions and antagonistic

interactions) and had their calls recorded during these treat-

ments. Body movement was used as an indicator of

emotional arousal. Screams and squeals tended to be produced

during negative interactions, and grunts were associated with

positive situations. Maigrot et al. [137] also used energy quar-

tiles, duration, formants and harmonicity in order to infer

emotional valence for the different call types and situations.

Overall, the calls that both domestic and wild pigs produce

are related to body size and various positive and negative

emotional states, and thus have great potential for future auto-

mated monitoring of their welfare. However, it should be

noted that there are distinct differences in the vocalizations of

the wild boar and domestic pig. For example, wild boars pos-

sess a vocalization known as the trumpet that is not observed
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in domestic piglets [136]. Like grunts, trumpets are used as con-

tact calls, but possess a higher frequency content than grunts.

This highlights that we need to be careful in extrapolating

results from studies regarding an animal’s wild ancestors if

we wish to apply them to welfare assessment.

7.3. Cattle
Green et al. [61] provide an excellent review of the evolution

of cattle vocal communication, as well as an overview of how

these vocalizations relate to various welfare contexts. They

separated cattle vocalization functions according to: indivi-

duality of vocalizations, vocal recognition, calf separation,

social isolation, oestrus, feeding and painful husbandry pro-

cedures. Cattle calls contain information on individuality due

to high levels of inter-cow variability in the acoustic charac-

teristic of their vocalizations. This allows for each animal to

be identified by the ‘uniqueness’ of their call [138–141].

Cattle are herd animals, and isolation from their conspecifics

results in physiological changes in the animal such as

increased heart rate, salivary cortisol, urination and defeca-

tion rates, and an increase in vocal responses [142]. The

different contexts put forward by Green et al. [61] could be

detected by creating a database of audio recordings of these

different vocalizations and their related contexts. Different

machine learning algorithms could potentially be trained

using this labelled dataset in order to identify the vocalization,

and thus the context in which it occurred.

Cattle cough sounds have been classified using labelled

data from a variety of recordings, which were identified by

a human labeller using a combination of audio and visual

scoring [143]. They labelled a total of 205 min of sounds,

resulting in 285 labelled calf coughs. They extracted features

by calculating the FFT of the incoming audio, removing the

background noise and reducing the resolution in the spectro-

grams by summing the frequencies into 12 separate bands.

They also calculated the duration of the cough. An

example-based classifier was used to compare the rough

reduced spectrogram of incoming audio with the reduced

spectrogram of the labelled data. This was achieved by calcu-

lating the Euclidean distance between the two rough

spectrograms. The lower the distance, the more it resembled

its corresponding spectrogram. This research achieved a 98%

specificity rate (true negatives) and 52% sensitivity rate (true

positive). Despite the low sensitivity, the algorithm was

still able to detect increased periods of coughing, allowing

farmers to administer treatment for the respiratory disorder.

Cattle grazing sounds have also been analysed in order to

determine the relationship between behaviour and acoustics

measurements with herbage dry matter intake [144]. This

was achieved by attaching microphones and cameras to a

cow’s forehead and exposing the cattle to different treatments

which varied plant species, two different heights, an increas-

ing of herbage mass and the number of bites it takes to finish

(10–30). The sounds were analysed by extracting the energy

flux density from the sounds. It was found that energy flux

density related linearly to dry matter intake.

8. Summary and recommendations
In this review, we have provided an overview of feature extrac-

tion methods, automated bioacoustics monitoring for ecology

and conservation, detecting emotions via vocalizations and

the effects of anthropogenic noise on animals. Following

this, a discussion of the vocalizations of three of the most impor-

tant farm livestock species was provided, and how these

vocalizations can be related to welfare state. Throughout

the discussion on livestock vocalizations, we highlighted a

number of areas that could benefit from automated monitoring.

These include automatic classification of distress vocalizations

in poultry [145], monitoring aggressive interactions between

conspecifics such as tail biting in pigs [50,146] and implement-

ing a context-based labelling for cattle calls [61].

It is clear that there is no shortage of automated methods

for classifying animal sounds. Today, one of the most press-

ing issues facing the use of acoustic monitoring for animal

welfare is the lack of an open source database. If such a data-

base were developed, it would be possible to implement

many of the methods discussed in this review. Ideally, such

a database would be designed similarly to open source pro-

jects such as the DCASE challenges [30]. Animal behaviour

and welfare scientists have done much to identify the vocal

repertoires of many important farm livestock species

[58,61,136]. We suggest that that labels for this type of data-

base could be based around the descriptions and analysis

found in the Discussion of livestock vocalizations in this

review. Due to the rapid growth and maturation of livestock

animals, it is also necessary to capture information about age,

size and weight, and the context and location in which these

vocalizations were produced. However, simply identifying

these vocalizations is not enough. It is essential that we

relate this database back to the core issues of animal welfare

such as the Five Freedoms [46,147], the environment the ani-

mals live in and quality of life that the animal experiences.

Since there is no available open source dataset, it is rec-

ommended that animal welfare researchers working with

vocalizations focus on building this dataset and implement-

ing classic machine learning and classification methods.

Following the deployment of traditional methods, big data-

bases will emerge. With these big databases, researchers

will be capable of implementing deep learning methods,

which have been shown to outperform more traditional

machine learning methods [7,69,70,97]. Deep learning is a

class of machine learning methodology that can carry out

supervised or unsupervised learning using very large data-

sets, and large neural networks with many layers such as

convolutional neural networks [69]. Previously, many of

these methods were inaccessible to researchers due to the

large amount of processing power and memory they

required. However, advances in the use of graphic processing

units have made deep learning available to many researchers,

and it has become one of the cutting-edge topics in machine

learning. However, its application to audio is only recent [30],

and deep learning requires a much larger dataset than the

more common classes of machine learning algorithms.

Finally, automated acoustic monitoring could be a useful

tool in precision livestock farming [77,148]. As farming systems

become increasingly automated, it is possible to dynamically

adjust the environment in which the animals are kept and

automatically change the temperature, lighting and venti-

lation. For example, if chicken rale calls were detected [149],

it could indicate that there is not enough airflow in the housing.

This could notify a computer to turn on fans and open win-

dows to increase the airflow. Lamb vocalizations have also

been analysed and shown that calls that reflect poor vocal
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fold engagement and arousal were less likely to be preferred by

their parents [150]. This suggests that automated analysis of

vocalizations could be an indicator of offspring quality. The

application of vocalization monitoring for precision livestock

farming is not new [56,77]. However, these previous efforts

have been aimed at labelling methods and growth monitoring.

Animal welfare researchers must look towards how these auto-

mated systems can integrate with vocal monitoring in order to

deliver the highest levels of animal welfare.
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